Ava peamenüü

Doppleri efekt on füüsikaline nähtus, mis avaldub selles, et helilaine või elektromagnetlaine registreeritav (tajutav, mõõdetav) sagedus sõltub lainete allika ja vastuvõtja liikumise kiirusest ning suunast. Kui allikas ja vastuvõtja lähenevad teineteisele, siis sagedus suureneb, teineteisest eemaldumisel sagedus väheneb. Sageduse suurenemine on samaväärne lainepikkuse vähenemisega ja vastupidi.[1]

Akustilise Doppleri efekti korral on määravaks nii heli allika kui ka vastuvõtja kiirus keskkonna suhtes. Optilise Doppleri efekti korral on määrav ainult allika ja vastuvõtja liikumise suhteline kiirus.

Heli ja elektromagnetkiirguse sageduse sõltuvust vastuvõtja ja heli- või kiirgusallika liikumise kiirusest põhjendas teoreetiliselt Austria füüsik Christian Doppler 1842. aastal.

Akustiline Doppleri efektRedigeeri

 
Doppleri efekt liikuva heliallika korral

Liikuva heliallika ja liikuva vastuvõtja korral kirjeldab helisageduse muutumist üldjuhul valem

 ,

kus   on vastuvõetava (kuuldava) heli sagedus ja   heliallika sagedus;   on vastuvõtja liikumiskiirus ja   allika liikumiskiirus;   on heli levimiskiirus (normaaltingimustel).

Ülemine tehtemärk kehtib heliallikate teineteisele lähenemise korral ja alumine eemaldumisel. Kui heliallikas seisab paigal, siis   ja kui heliallikas liigub paigalseisva vastuvõtja suhtes, siis  .

Vaatleme lähemalt juhtu, kui heliallikas läheneb paigalseisvale vastuvõtjale. Sel juhul saame kirjutada arvutusvalemi kujul

 .

Kui näiteks operatiivauto, mille sisselülitatud sireeni sagedus   Hz, läheneb paigalseisvale inimesele (vastuvõtjale) kiirusega 90 km/h ehk 90000/60·60 = 25 m/s, siis kuuleb inimene heli sagedusega

 .

Füüsikaliselt võib tooni kõrgenemist vaadeldud näite andmeil seletatada järgmiselt. Sireeni sagedusel 1000 Hz järgnevad õhuvõnkumise laineharjad üksteisele 1/1000 sekundi järel, kusjuures lainepikkus

 .

Nii on see seisva sõiduki korral. Kui sõiduk liigub vastuvõtja poole kiirusega   = 25 m/s, siis laineharjade vahe lüheneb ja vastuvõtjani jõuavad lained pikkusega

 .

Sellele lainepikkusele vastab sagedus

 ,

mis on sireeni sagedusest kõrgem.

Samamoodi saab arvutada ja seletada sireeni tooni madaldumist, kui allikas vastuvõtjast eemaldub. Vaadeldaval juhul

 .

Esitatud arvutused kehtivad eeldusel, et heliallika liikumised toimuvad otse vastuvõtja poole või sellest eemale. Sel juhul väheneb (ja suureneb) allika kaugus vastuvõtjast ühtlaselt ning üleminek kõrgemalt toonilt madalamale on järsk. Enamasti möödub signaaliallikas vastuvõtjast teatud kauguselt. Sellisel üldjuhul kirjeldab Doppleri nihet paigalseisva vastuvõtja suhtes valem

 

kus   on signaaliallika kiirus ja   on ajast sõltuv ühikvektor, mis on suunatud signaali allikast vastuvõtja poole.

Teatud kauguselt möödumisel muutub heliallika ja vastuvõtja vahekaugus ebaühtlaselt ja seetõttu toimub ka üleminek kõrgmalt toonilt madalamale sujuvalt.

Optiline Doppleri efektRedigeeri

Elektromagnetlained levivad ka vaakumis, seega ei vaja nad levimiseks keskkonda (nagu helilained). Kuid kui laineallikas liigub vastuvõtja (jälgija) suhtes, ilmneb samuti sageduste nihe. See relativistlik Doppleri efekt on seletatav sellega, et lained levivad lõpliku, absoluutse kiirusega, milleks on valguse kiirus  . Sageduse muutus sõltub ainult allika ja vastuvõtja suhtelisest kiirusest  ; kas seejuures liigub allikas, vastuvõtja või mõlemad, ei mõjuta see sageduse muutumist.

Relatiivsusprintsiibi kohaselt võib iga vaatlejat käsitleda paigalseisvana. Küll aga tuleb Doppleri efekti arvutamisel arvesse võtta vaatleja poole liikuvate lainete relativistlikku ajalist aeglustumist (ingl time dilation). Siis saab arvutada relativistliku Doppleri pikiefekti:

 

Elektromagnetlainete liikumisel vaatesuunaga risti ilmneb Doppleri ristefekt. See efekt on aga pikiefektist palju väiksem (mõjutab sagedust vähem) ja on sellega võrreldav üksnes väga suurel kiirusel.

Vaatamata sellele, et Doppleri efekti ja astronoomilise punanihke mõjud on sarnased (vaadeldava tähe või galaktika elektromagnetkiirguse sageduse vähenemine), ei või neid nähtusi segi ajatada, sest neil on erisugused põhjused. Relativistlik Doppleri efekt on sagedusmuutuse peamine mõjutaja siis, kui lainete saatja ja vastuvõtja aegruumis liiguvad ning nende vahekaugus on suhteliselt väike ja seega nendevahelise ruumi paisumine veel mõju ei avalda. Alates teatud vahekaugusest saavutab ülekaalu aegruumi enda paisumise mõju sagedusele, nii et Doppleri efekti toime võib jätta arvesse võtmata.

Doppleri efekti rakendusiRedigeeri

  • Doppleri radar arvutab objekti lähenemise kiiruse lähtudes elektromagnetlainete sageduse muutusest saadetud ja peegeldunud signaalide vahel.
    • Meteoroloogias mõõdetakse Doppleri radari abil keeristormide pöörlemisliikumisi.
    • Õhuseires kasutatakse Doppleri efektil põhinevaid passiivradareid.
    • Kiiruskaamerad kasutavad samuti Doppleri laserit.
  • Vooliste (vedelike, gaaside) kiirust saab kontaktivabalt mõõta laseranemomeetriga, mis kasutab akustilist või optilist Doppleri efekti voolava aine hajusatel osakestel või mullidel.
  • Meditsiinis kasutatakse akustilist Doppleri efekti ultraheliuuringutel verevoolu kiiruse mõõtmiseks.
  • Muusikas rakendatakse Doppleri efekti kõlaefektide loomiseks, näiteks pöörleva Leslie kõlari abil.

ViitedRedigeeri

Vaata kaRedigeeri