Erinevus lehekülje "Piltdiagnostika" redaktsioonide vahel

Suurus jäi samaks ,  4 aasta eest
P
skanneerima > skaneerima
P (skanneerima > skaneerima)
{{toimeta}} {{keeletoimeta}}
'''Meditsiiniline kuvamine''' on [[siseelundid|siseelundite]] visuaalne kujutamine [[diagnoos]]imise hõlbustamiseks.
 
Meditsiiniliseks kuvamiseks kasutatakse [[röntgenikiirgus]]t ([[röntgenkuvamine]]; näiteks [[mammograafia]]s ja [[kompuutertomograafia]]s, [[raadiolained|raadiolaineid]] ([[magnetresonantstomograafia]]s), [[gammakiirgus]]t ([[tuumameditsiin]]is) ja [[ultraheli]] ([[ultrahelikuvamine]]).
{{vaata|Magnetresonantskuvamine}}
Magnetresonants skannerid kasutavad magnetvälja, mis on 10 000 – 60 000 korda tugevamad kui Maa magnetväli. Suurem osa nendest kasutab protooni magnetresonants karakteristikuid, kuna bioloogilistes kudedes sisaldub ülisuur hulk prootoneid. Prootonil on magnetmoment, siis, kui seda panna magnetvälja, prooton võngub oma telgede juures ning neelab raadiolaine energiat. Järgnevalt, mõne aja pärast, mis erineb sõltuvalt kudede magnetkarakteristikutest, emiteerib prooton seda energiat tagasi. Antennid, mis asuvad patsiendi ümber, koguvad neid raadiolaineid. Magnetresonantssüsteemid kasutavad tagastavate lainete sagedust ja faasi, et määrata iga saadud signaali asukoht.
Magnetresonants tehnika võimaldab saada tomograafiliste kujutiste komplekt, milles sisalduvad pildid, kus iga punkt sõltub mikromagnetomandustest, mis vastavad sellele punktile. Seetõttu on kujutistel, mis on saadud magnetresonantstehnikat kasutades, parem kvaliteet ja kontrast võrreldes kompuutertomograafiaga. Magnetresonantsi puudus on see, et skanneerimiselskaneerimisel kulub rohkem aega. Seetõttu, juhul, kui patsiendi liikumist pole võimalik kontrollida ([[pediaatria]]) või anatoomilises piirkonnas, kus liikumine alati toimub (südametukse), kasutatakse ikka kompuutertomograafiat. Samuti eelistatakse kompuutertomograafiat trauma juhtudel ning juhul, kui patsiendil on sisemised ferromagnetilised objektid või [[Implantaat|implandid]].<ref name="EKK" />
 
== Ultraheli pildistamine ==
== Positroni kiirguse tomograafia ==
 
Positronid on positiivselt laetud elektronid, mida mõned radioaktiivsed isitoobid kiirgavad. Näiteks hapnik-:15. isotoobi lagunemise tõttu ilmub positron, mis ühineb kohe elektroniga. Mõlema osakese massid muutuvad energiaks annihilatsiooni protsessis tuntud Einsteini valemi järgi (E = mc<sup>2</sup>). Seda kiiratud energiat nimetatakse annihilatsiooni radiatsiooniks. Annihilatsiooni radiatsiooni tulemused on kaks footonit, mis on kiiratud korraga vastassuunas, ehk 180 kraadi üksteise suhtes. Positroni kiirguse tomograafias asuvad detektorid ringina patsiendi ümber. Nendel detektoritel on eriline lülituseskeem, mis võimaldab identifitseerida footoni paare, mis ilmuvad [[annihilatsioon]]i protessis. Kui niisugune paar jõuab kahele detektorile, eeldatakse, et annihilatsioon toimus kusagikuskil sirgel nende kahe detektori vahel. Seda infot kasutatakse, et matemaatiliselt arvutada isotoobi kolmemõõtmeline jaotus, mille tulemus on tomograafilise kujutise kogum.<ref name="KKE" />
 
== Kombineeritud pildistamine ==
 
Kõigil eespool nimetatud pildistamistehnikatel on oma eeliseid (näiteks kõrge ruumiline resolutsioon radiograafias) ja piiranguid (anatoomiline superpositsioon radiograafias). Üldiselt pakub tuumameditsiini pildistamine kudede kõrvalekallete kõrge kontrastiga kujutisi, kuid nendel piltidel ei ole anatoomilised osakesed piisavalt nähtavad, et määrata selle tehnikaga kahjustus siseelundis või koes. Samuti vähendab tuumameditsiinis kiirguse tugevuse kahaneminevähenemine patsienipatsiendi kudedega ka informatsiooni hulka kujutisel. Liites tuumameditsiini pildistamise süsteemid mõne teise pildistamise tehnikaga, mis pakub head anatoomilist täpsust (kompuutertomograafia või magnetresonants pildistamine) tekib võimalus saada paremaid ja täpsemaid kujutisi.
 
== Viited ==
129 088

muudatust