MRAM: erinevus redaktsioonide vahel

Eemaldatud 15 baiti ,  3 aasta eest
P
pisitoimetamine
P (pisitoimetamine)
Märgised: AWB tekstilink teise vikisse
 
Erinevalt tavalisest muutmälutehnoloogiast ei salvesta MRAM-mälu andmeid mitte elektri-, vaid magnetlaengute abil. Lihtsaima MRAMi konfiguratsiooni puhul on elemendid moodustatud kahest, õhukese isolatsioonikihiga eraldatud [[ferromagnetism|ferromagnetilisest]] plaadist, millest kumbki suudab hoida magnetvälja. Üks kahest plaadist on kindlale polaarsusele seatud püsimagnet, teist välja on mälu salvestamiseks võimalik muuta nii, et see oleks vastavuses ülejäänud väljaga.
 
Kõige lihtsam meetod mälust lugemiseks on elemendi [[elektritakistus|elektritakistuse]]e mõõtmine. Konkreetne element
valitakse (tavaliselt) seotud [[transistor|transistori]]i pingestamisega, mis lülitab [[elektrivool |voolu]] toitetorustikust
läbi elemendi maandamiseks. Magnetilise tunneli mõju tõttu muutub [[elektritakistus]] elemendis kahe plaadi välja orientatsiooni tõttu. Saadud voolu mõõtmisega tehakse kindlaks takistus igas konkreetses elemendis ja tuletatakse sellest kirjutatava plaadi polaarsus. Tavaliselt omistatakse sama polaarsusega plaatide korral sellele väärtus "1", vastupidise polaarsusega plaatide korral "0".
orientatsiooni tõttu. Saadud voolu mõõtmisega tehakse kindlaks takistus igas konkreetses elemendis ja tuletatakse sellest kirjutatava plaadi polaarsus. Tavaliselt omistatakse sama polaarsusega plaatide korral sellele väärtus "1", vastupidise polaarsusega plaatide korral "0".
 
Andmed kirjutatakse elementidesse erinevate vahenditega. Kõige lihtsamal juhul jääb iga element kirjutamisridade paari vahel täisnurga all üksteise kohal või all elemendi suhtes. Kui vool on neid läbinud, siis tekib [[Elektromagnetiline induktsioon |põhjustatud magnetväli]] nende ühendumiskohal, mille kirjutatav plaat üles korjab. See tegevusmuster sarnaneb 1960ndatel laialdaselt kasutusel olnud põhimälusüsteemi omaga. Selline lähenemisviis eeldab vajaliku välja loomiseks üsna märkimisväärset voolu, seega pole MRAM hea kui tahta kasutada väikest võimsust, see on ühtlasi ka üks MRAMi suuremaid miinuseid. Seadme suuruse vähendamisel saabub hetk, kui indutseeritud väli kattub külgnevate lahtritega üle väikese ala, mis võib põhjustada valekirjed. See probleem, pool-valitud (või kirjutamis häire) probleem, määrab seda tüüpi elementidele kindlad suurused.
 
[[ImagePilt: MRAM-Cell-Simplified.svg | thumb | 300px | right | Lihtsustatud MRAM elemendi struktuur]]
 
Teine lähenemisviis, '''toggle režiim''', kasutab multi-step kirjutamist muudetud mitmekihiliste elementidega. Lahter on modifitseeritud nii, et see sisaldaks "kunstliku antiferromagnetit", kus magnetvälja orientatsiooni edasi-tagasi üle pinna, nii et nii kinnitatud ja vaba kihid, mis koosnevad mitmekihilistest tornid isoleeritud õhuke "liidese kihiga". Saadud kihtidel on ainult kaks stabiilseteks olekut, mida saab ümber lülitada ühest teistele ajastades kirjutamise voolu kahel real nii et üks on veidi hiljem kui teine, seeläbi "pööravad" välja. Igasugune pinge mis on vähem kui täielik pinge mis on vajalik kirjutamiseks, suurendab flippimise resistensust. See tähendab, et teised elemendid mis asuvad ühe kirjutus rea liinil ei kannata pool-valiku probleemi. Seega on võimalik väiksemad elementide suurused.
 
Üks uuem tehnika, spinnülekande pöördemoment (STT) (inglise keeles ''spin transfer switching''), kasutab keerdjoondatud ("polariseeritud") [[elektron]]e, et tekitada pöördemoment domeenil. Spetsiifiliselt, kui elektronid mis voolavad kihti peavad muutma oma pööret, siis see arendab pöördemomenti, mis kantakse lähedal olevale kihile. See vähendab voolu suurust mida on vaja, et kirjutada need elemendid, mistõttu on seda vaja umbes sama palju kui lugemis protsessi jaoks. <ref name="TCYqf" /> on mure, et" klassikalist"-tüüpi MRAM-elemendil on raskusi kõrge tiheduse juures kuna pinge, mis on kirjutamise ajal vajalik, see on probleem, mida STT väldib. Sel põhjusel loodavad STT pooldajad, et tehnikat hakatakse kasutama seadmete juures, mis on 65 &nbsp;nm ja väiksem. Negatiivne külg on see, et on vaja säilitada spin-sidusust. Üldiselt nõuab STT kirjutamiseks palju vähem voolu kui tavaline või toggle MRAM. Teadusuuringud selles valdkonnas näitavad, et STT voolu saab vähendada kuni 50 korda kasutades uut komposiitkonstruktsiooni.<ref name="83b7X" /> Samas on aga suurema kirjutamiskiiruse rakendamiseks vaja kasutada kõrgemat voolu.<ref name="ejEDD" />
 
Muud võimalikud seadistused sisaldavad "[[:en:Thermal Assisted Switching|termiliselt abistatud üleminekud]]" (TAS-MRAM), mis kuumeneb kiiresti (meenutades [[:en:phase-change memory|järk-muutus mälu]]) [[:en:magnetic tunnel junction|magnetilise tunneli ristmiku]] kirjutamisprotsessi ajal ja hoiab MTJs stabiilselt külmema temperatuuri juures ülejäänud ajast; <ref name="C53yL" /> ja "vertikaalne transport MRAM" (VMRAM), mis kasutab voolu läbi vertikaalses veerus, et muuta magnetvälja orientatsiooni, geomeetriline paigutus, mis vähendab kirjutades häireprobleemi ja nii saab seda kasutada suurema tihedusega.
<ref name="DZNOn" />
 
*2003 – toodi turule 128 kbit MRAM-kiipi, mis oli toodetud 0,18-mikromeetrisel tehnoloogial
2004
*Juuni – Infineon teatas 16 &nbsp;Mbit prototüübist, mis põhines 0,18-mikromeetrisel tehnoloogial.
*September – MRAM sai Freescale’i standardtooteks
*Oktoober – Taiwani arendajad lõid 1-megabitise MRAM TSMC ettevõttes.
*Märts – Cypress loobub MRAM-i arendusest ja müüb enda MRAMi arendusosakonna maha. Põhjenduseks toodi, et nad arvavad, et MRAM jääb igavesti nišitooteks ja ei suuda SRAMi asendada.
*Juuni – Honeywell avaldas 1-megabitise 0,15-mikromeetrise tehnoloogiat kasutava MRAMi spetsifikatsiooni.
*August – suudeti luua 2 &nbsp;GHz kiirusega MRAM-tehnoloogia.
*November – Renesas Technology ja Grandis teevad koostööd, et arendada välja 65 &nbsp;nm tehnoloogiaga MRAM.
*Detsember – Sony teatas esimesest laboratooriumis toodetud ''spin torque transfer'' tehnoloogial MRAMist, millega saavutati oluline voolutarbimise kokkuhoid ja mille tõttu suudeti mälurakud mõõtmetelt veelgi väiksemaks teha.
*Detsember – Freescale Semiconductor teatab avalikkusele MRAMist, mis kasutab isolaatorina alumiiniumoksiidi asemel magneesiumoksiidi. Niimoodi saavutati õhem tunnel, see aga omakorda vähendab tarbitava voolu hulka kirjutamistsükli ajal.<ref name="Powerpoint" />
Suur magnettakistus on oluline, et saavutada kõrget signaali väärtus mäluelemendist, eriti kui tahetakse kiiresti lugemeid saada.
Kiire lugemi saamiseks on vaja magnetilise tunneli kõrget takistust, seda saavutatakse viimase õhukese paksusega. Kusjuures takistust saab mõningal määral juhtida viimase paksust muutes.
Kuna magnettakistus ei muutu temperatuurist (alles [[Curie punkt]]i ~500 &nbsp;°C juures hakkab muutuma), siis on inseneridel väga mugav luua mäluseadmeid töötama ka ekstreemtemperatuuride jaoks.
See, et pinge väheneb suurema TMRi juures, on halb just mäluelemendi väärtuse lugemise seisukohalt.
 
Boldis oleva näitaja suhtes on MRAMil eelis – MRAMil on olematu andmete uuendamiseks vajatav energiakulu, lõpmatu arv kirjutamise võimalus mäluelementi, madal kirjutamise energiakulu võrreldes [[välkmälu]]ga. <ref name="Powerpoint" />
 
==Kasutatakse==
*patareiga varustatud SRAM-i asendaja <- pikem tööaeg
*andmeid logisse kirjutavad mälud (''black box'')
*''Personal Life Recorder'' – utoopiline audio-videosalvesti inimese keha küljes, mis salvestab kõik inimese eluajal kogetu. MRAM teeb selle võimalikuks tänu sellele, et MRAMi eeldatav andmemaht ruumalaühiku kohta on ligi 400 korda tihedam kui seni maailma kõige tihedama (''high density'') HDD oma. <ref name="Powerpoint" />
 
==Konkurendid==
==Viited==
{{viited|allikad=
<ref name="Powerpoint">http://www.physic.ut.ee/instituudid/efti/loengumaterjalid/mmm/Kristo%20Nikkolo.ppt</ref>
<ref name="TCYqf">[http://www.physorg.com/news8655.html "Renesas, Grandis teha koostööd arendamine 65 nm MRAM Kasutatakse Spin Torque Transfer "], 1. detsember 2005</ref>
<ref name="83b7X">[http://www.license.umn.edu/Products/Lower-Switching-Current-for-Spin-Torque-Transfer-in-Magnetic-Storage-Devices-such-as-Magetoresistive-Random-Access-Memory-%28MRAM%29__Z09007.aspx Lower Switching Current for Spin-Torque Transfer in Magnetic Storage Devices such as Magnetoresistive Random Access Memory (MRAM)] University of Minnesota (vaadatud 15. augustil 2011)</ref>
<ref name="C53yL">http://www.crocus-technology.com/pdf/BH GSA Article.pdf</ref>
<ref name="DZNOn">[http://www.nve-spintronics.com/mram-operation.php "Kuidas MRAM Töötab"]</ref>
<ref name="Powerpoint">http://www.physic.ut.ee/instituudid/efti/loengumaterjalid/mmm/Kristo%20Nikkolo.ppt</ref>
}}
 
76 060

muudatust