Transformatsioon (geneetika): erinevus redaktsioonide vahel

Eemaldatud sisu Lisatud sisu
Rezabot (arutelu | kaastöö)
P r2.7.1) (Robot: muudetud fa:تراریختی
Unicodifying using AWB
1. rida:
[[Molekulaarbioloogia]]s mõistetakse '''transformatsiooni''' all raku geneetilist muutumist, mis johtub vaba, valkude poolt sidumata eksogeense [[DNA]] sattumisest väliskeskkonnast läbi [[rakumembraan]]i [[rakk]]u, kus see raku enda geneetilise materjaliga liidetakse ning võõrgeeni ekspresseeritakse. Transformatsiooni tuleb ette nii mõnede bakteriliikide puhul looduses kui ka sihipärase tegutsemise tulemusena laboris. Transformatsioon on üks kolmest protsessist, mille käigus on võimalik võõr-DNA-d bakterirakku viia. Teisteks võimalusteks on [[konjugatsioon]], mis ilmneb kahe bakteri otsesel kokkupuutel, ja [[transduktsioon]], kus eksogeenne materjal viiakse bakterirakku [[bakteriofaag]]i abil. Baktereid, kes on võimelised transformeeruma, nimetatakse kompetentideks. Ka teisi rakke peale bakterite on võimalik transformeerida, näiteks taime- ja loomarakke, kuid eelistatum mõiste kirjeldamaks võõr-DNA viimist eukarüootsesse rakku on [[transfektisoon]]. Loomarakkude puhul välditakse antud protsessi puhul transformatsiooni mõiste kasutamist, sest "malignant transformation" ehk pahaloomuline transformatsioon tähendab ühtlasi ka normaalsete rakkude muutumist pahaloomulisteks kasvajarakkudeks, mil pole midagi pistmist rakuvälise geneetilise materjali sattumisega rakku. <ref>[Alberts, Bruce; et al. (2002). Molecular Biology of the Cell. New York: Garland Science. p. G:35. ISBN 9780815340720.].</ref>
 
==Ajalugu==
5. rida:
Esmakordselt demonstreeris transformatsiooni toimumist aastal 1928 briti bakterioloog [[Frederick Griffith]], kes tegeles kahe [[Streptococcus pneumoniae]] tüve uurimisega. Kui Griffith süstis hiiri ohutu tüve (II-R) bakterite või kuumusega tapetud haigust tekitava tüve (III-S) bakteritega, jäid hiired ellu, kuid nende kahe kombinatsioon osutus hiirtele surmavaks. Surnud hiirte verest õnnestus tal isoleerida mõlema tüve elusaid rakke ning järeldas sellest, et mingi seaduspära järgi on võimalik ühe bakteritüve muundumine teiseks. Tema mõtet arendasid edasi [[Oswald Avery]], [[Colin MacLeod]] ja [[Maclyn McCarty]], kes tõestasid aastal 1944, et tegu on geneetilise materjali ülekandega. Kasutades samu tüvesid, isoleerisid nad [[virulentsus|virulentse]] tüve DNA ja näitasid, et selle viimisest II-R tüvesse piisab, et kahjutu tüvi samuti virulentseks muutuks, kummutades sellega tol ajal laialt levinud arusaama, et [[valk|valgud]] on pärilikkust kandvaks materjaliks. DNA hõivamist väliskeskkonnast rakku ja selle arvamist raku enese DNA hulka hakkasid nad nimetama transformatsiooniks. Algul suhtuti nende avastusse küll suure umbusuga, kuid geneetiliste markerite kasutuselevõtt ja teiste geneetilise materjali ülekandemeetodite avastamine [[Joshua Lederberg]]i poolt <ref>[Lederberg, Joshua (1994). The Transformation of Genetics by DNA: An Anniversary Celebration of AVERY, MACLEOD and MCCARTY(1944) in Anecdotal, Historical and Critical Commentaries on Genetics. The Rockfeller University, New York, New York 10021-6399. PMID 8150273].</ref> (konjugatsioon 1947. ja transduktsioon 1953. aastal) veenis teaduskogukonda Avery tulemusi tunnustama.
Siiski oldi üsna veendunud, et [[Escherichia coli]] ei ole transformatsioonialdis. Alles aastal 1970 näitasid [[Morton Mandel]] ja [[Akiko Higa]] <ref>[Mandel, Morton; Higa, Akiko (1970). "Calcium-dependent bacteriophage DNA infection". Journal of Molecular Biology 53 (1): 159–162. doi:10.1016/0022-2836(70)90051-3. PMID 4922220].</ref>, et [[kaltsiumkloriid]]i lahusega töötlemise tagajärjel on E. coli võimeline väliskeskkonnast ilma faagi abita bakteriofaagi DNA-d inkorporeerima. Paar aastat hiljem tõestasid Stanley Cohen, Annie Chang ja Leslie Hsu, <ref>[Cohen, Stanley; Chang, Annie and Hsu, Leslie (1972). "Nonchromosomal Antibiotic Resistance in Bacteria: Genetic Transformation of Escherichia coli by R-Factor DNA". Proceedings of the National Academy of Sciences 69 (8): 2110–4. doi:10.1073/pnas.69.8.2110. PMC 426879. PMID 4559594].</ref> et sarnane meetod on efektiivne ka [[plasmiid]]se DNA puhul. Mandeli ja Higa meetodit arendas hiljem edasi [[Douglas Hanahan]]. <ref>[Hanahan, D. (1983). "Studies on transformation of Escherichia coli with plasmids". Journal of molecular biology 166 (4): 557–580. doi:10.1016/S0022-2836(83)80284-8. PMID 6345791].</ref> Kunstlikult tekitatud kompetentsuse võimalikkus E. coli kui laialdaselt kasutatava [[mudelorganism]]i puhul pani aluse mugava ja efektiivse metoodika arendamisele bakterite transformeerimiseks, mis võimaldab [[biotehnoloogia]]s ja teadustöös kasutada varasemast oluliselt lihtsamaid molekulaarse [[kloneerimine|kloneerimise]] võtteid. Praeguseks on transformatsiooni näol tegu igapäevase laboriprotseduuriga.
Transformatsioon [[elektroporatsioon]]i teel arendati välja 1980. aastate lõpul, tuues kaasa ''[[in-vitro]]'' transformatsiooni efektiivsuse tõusu ja võimaluse enamate bakteritüvede transformatsiooniks.<ref>[Wirth, Reinhard; Friesenegger, Anita and Fiedlerand, Stefan (1989). "Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation"].</ref> Uuriti ka taime- ja loomarakkude transformeerimise võimalusi, mis päädis esimese [[transgeenne|transgeense]] hiire loomisega aastal 1982, süstides hiire [[embrüo|embrüosse]]sse geeni roti kasvuhormooni jaoks. <ref>[Palmiter, Richard; Ralph L. Brinster, Robert E. Hammer, Myrna E. Trumbauer, Michael G. Rosenfeld, Neal C. Birnberg & Ronald M. Evans (1982). "Dramatic growth of mice that develop from eggs microinjected with metallothionein−growth hormone fusion genes". Nature 300 (5893): 611–5. doi:10.1038/300611a0. PMID 6958982].</ref> Varajastel 1970. aastatel avastati, et Ti-plasmiid [[Agrobacterium tumefaciens]]i rakkudes on põhjuseks, miks antud bakter taimedele kasvajaid tekitab. <ref>[Nester, Eugene. "Agrobacterium: The Natural Genetic Engineer (100 Years Later)". Retrieved 14 January 2011].</ref> [[Ti-plasmiid]] integreerub taime [[genoom]]i <ref>[Zambryski, P.; Joos, H.; Genetello, C.; Leemans, J.; Montagu, M. V.; Schell, J. (1983). "Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity". The EMBO journal 2 (12): 2143–2150. PMC 555426. PMID 16453482].</ref> , kutsudes esile tuumorite teket. Asendades Ti-plasmiidis kasvajat tekitava geeni mõne muu huvipakkuva [[geen]]iga, on võimalik A. tumefaciensiga taimi nakatades [[kaheiduleheline|kaheiduleheliste]] taimede genoomi viia valitud DNA. [[Üheiduleheline|Üheiduleheliste]] ja mõningate teiste A. tumefaciensi suhtes tundetute taimede transformatsiooniks kasutatakse elektroporeerimist ning [[mikro-injektsioon]]i <ref>[Peters, Pamela. "Transforming Plants – Basic Genetic Engineering Techniques". Retrieved 28 January 2010].</ref> [[Biolistiline|Biolistilise]] meetodi ehk raku pommitamise geneetilise materjaliga kaetud metalliioonidega võttis 1990 aastal kasutusele [[John Stanford]]. <ref>[Voiland, Michael; McCandless, Linda. "DEVELOPMENT OF THE "GENE GUN" AT CORNELL". Retrieved 28th january 2010.].</ref>
 
 
==Mehhanismid==
 
===Bakterid===
 
20. rida ⟶ 18. rida:
Umbes 1% bakteriliikidest on loomulikult kompetentsed, olles võimelised laborikeskkonnas ilma lisatöötluseta vaba DNA-d oma rakku võtma.
On alust arvata, et looduslikus keskkonnas on see protsent suurem. Kui DNA kandub üle ühelt bakteritüvelt teisele, nimetatakse seda
[[horistontaalne geeniülekanne|horisontaalseks geeniülekandeks]], mis on geneetilise materjali saamine teiselt organismilt, olemata selle järglane. <ref> [http://en.wikipedia.org/wiki/Horizontal_gene_transfer Horisontaalne geeniülekanne].</ref> Lähedaste liikide vahel toimib transformatsioon paremini kui evolutsiooniliselt kaugemate liikide puhul. Looduslikult kompetentsetes bakterites on olemas geenikomplektid, mis kodeerivad DNA transmembraanseks transpordiks vajalikke valke, näiteks [[DNA translokaas]]i komplekse tsütoplasmamembraanis <ref>[Chen I, Dubnau D (2004). "DNA uptake during bacterial transformation". Nat. Rev. Microbiol. 2 (3): 241–9. doi:10.1038/nrmicro844. PMID 15083159].</ref> ja tüüp IV kiudude kokkupanekuks tarvilikke valke.
 
Tulenevalt [[Gram-positiivsed bakterid|Gram-positiivsete]] ja [[Gram-negatiivsed bakterid|Gram-negatiivsete]] bakterite rakumembraani erinevustest esineb mõningaid erinevusi viisis, kuidas täpselt bakterid rakuvälist DNA-d enda sisse toovad, kuid üldjoontes on protsess siiski sarnane. Esmalt seondub DNA kompetentse raku pinnal paiknevale DNA retseptorile ning liigub DNA translokaasi abil läbi rakumembraani. <ref>[Lacks, S.; Greenberg, B.; Neuberger, M. (1974). "Role of a Deoxyribonuclease in the Genetic Transformation of Diplococcus pneumoniae". Proceedings of the National Academy of Sciences of the United States of America 71 (6): 2305–2309. PMC 388441. PMID 4152205].</ref> Selle käigus lagundatakse selle üks ahel nukleaaside poolt, kuna rakku pääseb vaid üheahelaline DNA. Sellist üheahelalist DNA-d on RecA ehk [[rekombinaas A]] abil võimalik genoomi integreerida. Gram-negatiivsed bakterid vajavad oma rakukesta mitmekihilise ehituse tõttu valgulist kanalit ka välisesse membraani, mille moodustavad sekretiinid. Arvatakse ka, et oma roll on [[piliin]]il, kuid selle funktsiooni kohta pole veel kuigi palju teada. <ref>[Long, C. D.; Tobiason, D. M.; Lazio, M. P.; Kline, K. A.; Seifert, H. S. (2003). "Low-Level Pilin Expression Allows for Substantial DNA Transformation Competence in Neisseria gonorrhoeae". Infection and immunity 71 (11): 6279–6291. PMC 219589. PMID 14573647].</ref> DNA transport rakku pole enamasti järjestuse-spetsiifiline, ent mõnede
liikide puhul võivad kindlad järjestused rakuvälises DNA-s seda kergendada. <ref>[Sisco, K. L.; Smith, H. O. (1979). "Sequence-specific DNA uptake in Haemophilus transformation". Proceedings of the National Academy of Sciences of the United States of America 76 (2): 972–976. PMC 383110. PMID 311478. editFull text at PMC: / 383110].</ref>
 
====Kunstlik kompetentsus====
Kunstliku kompetentsuse tekitamiseks on kaks enamlevinud meetodit: elektroporatsioon ja rakkude manipuleerimine temperatuuri ning soolalahuse abil. Mõlemad neist muudavad rakuseina DNA-le passiivselt läbitavaks looduses harilikult mitteilmnevate keskkonnategurite mõjul. <ref>[Large-volume transformation with high-throughput efficiency chemically competent cells. Focus 20:2].</ref>
Elektroporatsiooni käigus antakse bakterirakkude lahusele, kuhu on lisatud soovitav plasmiid, elektrilöök, mis perforeerib nende rakuseina, et plasmiidne DNA siseneda saaks. Peale elektriväljale eksponeerimist parandavad raku membraaniparandusmehhanismid augud taas väledasti ära. Tegu on rakusõbralikuma meetodiga kui soolalahuse kasutamine, kuna rakud viibivad stressitekitavates tingimustes palju lühemat aega. Kasutatava elektrivälja tugevus jääb tavaliselt vahemikku 10–20 kV/cm.
53. rida ⟶ 51. rida:
keskmiselt 10<sup>6</sup>–10<sup>7</sup> transformanti mikrogrammi plasmiidi kohta. Keemiline meetod toimib rõngasja DNA puhul väga hästi, kuid ei kõlba lineaarsete DNA fragmentide tarvis, arvatavasti seetõttu, et raku eksonukleaasid lagundavad lineaarse DNA kiiresti ära. Looduslikud kompetendid seevastu transformeeruvad lineaarse DNA-ga paremini kui plasmiidsega.
 
Transformatsiooni efektiivsus väheneb plasmiidi suuruse kasvades, mistõttu kasutatakse suuremate DNA molekulide puhul elektroporatsiooni. <ref>[Transformation efficiency of "'E. coli'" electroporated with large plasmid DNA. Focus 20:3 (1998)].</ref> Elektroporeeritavaid rakke on enne töötlust soovitatav pesta külma mitmekordselt destilleeritud veega, eemaldamaks laetud osakesi, mis protsessi käigus sädet anda võiksid.
 
==Vaata ka==