Rühm (matemaatika)

Rühmaks (varem nimetatud ka grupiks) nimetatakse matemaatikas hulka koos sellel defineeritud assotsiatiivse binaarse tehtega, mis rahuldab teatud pööratavuse tingimusi, mida on selgitatud allpool.

Rühma mõiste abil üldistatakse matemaatikas elementaarmatemaatika binaarseid tehteid nagu reaalarvude korrutamine (koos jagamisega) või liitmine (koos lahutamisega).

Rühma mõiste puhul pole oluline, milliste objektidega tehteid tehakse: need võivad olla arvud, kuid ka midagi muud. Nagu algebras ikka, tähistatakse neid objekte sümbolitega (tähtedega).

Rühma tehet, mis üldistab arvude liitmist või korrutamist, nimetatakse üldjuhul korrutamiseks. Erinevalt arvude liitmisest või korrutamisest ei pruugi see korrutamistehe olla kommutatiivne. Kommutatiivse tehtega rühmi nimetatakse Abeli rühmadeks.

Rühmi uurib rühmateooria.

Definitsioon

muuda

Rühm (G, * ) on mittetühi hulk G koos binaarse tehtega * : G × GG, mis rahuldab allpool esitatud aksioome. "a * b" on tulemus, mis saadakse tehte * rakendamisel hulga G elementide järjestatud paarile (a, b). Rühma aksioomid on järgmised:

  • Assotsiatiivsus: hulga G mis tahes elementide a, b ja c korral (a * b) * c = a * (b * c).
  • Ühikelement ehk neutraalne element: Hulgas G leidub niisugune element e (ühikelement ehk neutraalne element), et hulga G mis tahes elemendi a korral e * a = a * e = a.
  • Pöördelement: Hulga G mis tahes elemendi a korral leidub hulgas G niisugune element b, et a * b = b * a = e, kus e on eelmises aksioomis postuleeritud ühikelement.

Tehte suletus

muuda

Mõnikord lisatakse niisugune aksioom:

  • Hulga G kõikide elementide a ja b korral kuulub a * b hulka G.

Ülaltoodud definitsioonile seda aksioomi lisada pole tarvis, sest see tuleneb binaarse algebralise tehte definitsioonist.
Kui aga on tarvis kindlaks teha, kas etteantud tehe * on rühmatehe, tuleb igatahes kontrollida, kas * rahuldab seda aksioomi (tingimust); kui mitte, siis pole tegemist binaarse algebralise tehtega.

Aksioomide komplekti liiasus

muuda

Ka ülaltoodud aksioomide komplekt sisaldab teatud määral liiasust.

Rühm ei pea olema kommutatiivne

muuda

Rühma tehe ei pea olema kommutatiivne: rühmas võivad leiduda sellised elemendid a ja b, et a * bb * a. Kui rühma G mis tahes elementide a ja b korral a * b = b * a, siis rühma g nimetatakse Abeli rühmaks (norra matemaatiku Niels Henrik Abeli järgi) ehk kommutatiivseks rühmaks. Rühmi, millel seda omadust ei ole, nimetatakse mitte-Abeli ehk mittekommutatiivseteks rühmadeks.

Vabadused rühmale osutamisel

muuda

Sageli tähistatakse rühma (G, * ) lihtsalt "G", jättes tehte * mainimata. Seda saab teha ainult juhul, kui tehe on iseenesestmõistetav või kokku lepitud. Tegelikult saab hulgal, millel on üle ühe elemendi, defineerida mitu erinevat rühma tehet.

Multiplikatiivne ja aditiivne tähistusviis

muuda

Multiplikatiivne tähistusviis

muuda

Hoolimata tehte tegelikust loomusest kasutatakse suvalistest rühmadest rääkides analoogia põhjal korrutamisega tavaliselt multiplikatiivset tähistusviisi ning rühma tehet nimetatakse korrutamiseks.
Multiplikatiivne tähistusviis tähendab järgmisi kokkuleppeid:

  • Tehte tulemust tähistatakse a * b asemel "a · b" või "ab" ning seda nimetatakse a ja b korrutiseks.
  • Elementi e nimetatakse ühikelemendiks ja tähistatakse "1".
  • Elemendi a pöördelementi tähistatakse "a−1" ning nimetataksegi elemendi a pöördelemendiks.

Aditiivne tähistusviis

muuda

Mõnikord peetakse rühma tehet analoogiliseks liitmisega ning kasutatakse aditiivset tähistusviisi, mis hõlmab järgmised kokkulepped:

  • Tehte tulemust a * b märgitakse kujul "a + b" ning nimetatakse a ja b summaks.
  • Ühikelementi (neutraalset elementi) tähistatakse "0" ja nimetatakse nullelemendiks.
  • Elemendi a pöördelementi tähistatakse "−a" ning nimetatakse elemendi a vastandelemendiks.

Tähistusviisi valik

muuda

Aditiivset tähistusviisi kasutatakse tavaliselt üksnes Abeli rühmade puhul. Teiselt poolt, Abeli rühmade puhul võidakse kasutada ka multiplikatiivset tähistusviisi.

Võimalik on kasutada ka neutraalset tähistusviisi, näiteks sellist nagu rühma definitsioonis käesolevas artiklis. Sel juhul on tehtemärk (näiteks) "*", ülejäänud tähistused (näiteks) samasugused nagu multiplikatiivse tähistusviisi korral. Tähistusviisi neutraalsuse rõhutamiseks võib ühikelementi nimetada neutraalseks elemendiks.

Rühma järk

muuda

Rühma G järguks (tähis: |G| või o(G)) nimetatakse hulga G võimsust. Kui G on lõplik hulk, siis rühma G järk on hulga G elementide arv.

Kui G on lõplik hulk, siis rühma G nimetatakse lõplikuks rühmaks.

Vaata ka

muuda

Välislingid

muuda