Lainevõrrand

Impulsi levimine keelel vastavalt ühedimensionaalsele lainevõrrandile

Lainevõrrand on oluline teist järku lineaarne hüperboolne osatuletistega diferentsiaalvõrrand, mis kirjeldab füüsikas laineid ehk häirituste levikut keskkonnas (pillikeele võnkumine, valguse- ja helilaine levik, veelaine levik jne). Võrrandi üldkuju ühedimensionaalse juhu jaoks on:

,

kus alaindeksid viitavad muutujatele, mille järgi on osatuletised võetud, ning indeksite arv näitab, mitmendat järku osatuletisega on tegemist. Konstant on kiiruse ruudu dimensiooniga ning kirjeldab laine levimise kiirust. Elektromagnetlaine jaoks , kus on valguse kiirus. Lainevõrrandi lahendiks kõige üldisemal kujul on funktsioon , millest on pikemalt juttu peatükis D'Alemberti lahend. Lainevõrrand lahti kirjutatuna osatuletiste kaudu avaldub järgmiselt:

Antud võrrandi kuju nimetatakse ka hüperboolseks. Teljestikul laine amplituud versus koordinaat kirjeldab mingis fikseeritud punktis häirituse amplituudi muutumise kiiruse muutust ajas. Suurus aga funktsiooni nõgusust kohal .

D'Alemberti lahendRedigeeri

Ühedimensionaalse võrrandi D'Alemberti lahendi saab leida tehes esiteks kanoonilised koordinaatteisendused:

 
 

Leiame diferentseerides:

 
 
 
 

Asendades lähtevõrrandisse   ning   saame üldkujulise võrrandi uue kanoonilise kuju:

 

Integreerimisel saame:

 

Üldlahendiks on lahendite lineaarkombinatsioon (võrrandit rahuldavate lahendite summa). Lainel võib olla kuitahes palju allikaid ning üksikute allikate panuste liitumisel saadakse summaarne laine. Sisuliselt viitab see superpositsiooniprintsiibile, mis on omane väljadele ja lainetele. Näide superpositsioonist on lainete interferents.

Elektromagnetlainet kirjeldava võrrandi tuletamine Maxwelli võrranditest[1]Redigeeri

 
Elektromagnetlaine levik  -telje suunas. Elektrivälja tugevus muutub perioodiliselt  - ja  -teljega määratud tasandis ning magnetinduktsioon muutub perioodiliselt  - ja  -teljega määratud tasandis. Elektromagnetlaine liigub valguse kiirusega ning laine leviku suund on ühtlasi määratud Poyntingi vektoriga.

Olgu koordinaatsüsteem valitud, nii et elektrivälja tugevuse   ja magnetinduktsiooni   vektorid oleksid suunatud vastavalt  - ja  -telje sihis. Elektrivälja tugevuse ja magnetinduktsiooni väärtus sõltugu vaid koordinaadist   ja ajast  . Elektrivälja tugevuse ja magnetinduktsiooni vektorite ajalise käitumise saab kirja panna järgnevalt:

 
 

Siin pole täpsustatud, milliste funktsioonidega on elektri- ja magnetvälja käitumine määratud. Seda oli vaja üksnes selleks, et lainevõrrandi tuletamisel meeles pidada, millistest muutujatest elektrivälja tugevus ja magnetinduktsioon sõltuvad. Kui lainevõrrand on tuletatud, siis vastavate teist järku diferentsiaalvõrrandite lahendamisel saavad funktsioonid   ja   konkreetsema kuju.

Maxwelli võrrandid vaakumis leviva elektromagnetlaine jaoks:Redigeeri

Gaussi seadus elektrivälja jaoks allikavabas ruumis:  
Gaussi seadus magnetvälja jaoks:  ,

kus nabla   on diferentsiaaloperaator. Nendes Maxwelli võrrandites tähistab punkti kujul esitatud korrutusmärk nabla skalaarkorrutist väljavektoriga. Need kaks võrrandit kirjeldavad väljade allikalisust. Magnetväljal puuduvad allikad (tekitajad), magnetmonopoolid olenemata kontekstist. See tähendab, et näiteks magneti korral on magnetvälja jõujooned kinnised kõverad. Elektrivälja saab tekitada mitmel viisil. Üks variant on laenguga osakesed (negatiivselt laetud elektronid, positiivselt laetud aatomituumad), ent vaakumis leviva elektromagnetlaine perioodiliselt muutuva elektrivälja tugevuse komponenti ei tekita laeng ja magnetinduktsiooni komponenti ei põhjusta magnetid. Järgmised kaks Maxwelli võrrandit näitavad, kuidas toimub elektromagnetlaine levik vaakumis:

Faraday seadus:  
Ampère'i-Maxwelli seadus:  ,

kus   on magnetiline konstant ehk vaakumi magnetiline läbitavus ja   on elektriline konstant ehk vaakumi dielektriline läbitavus. Nendes Maxwelli võrrandites tähistab  -kujuline korrutusmärk nabla vektorkorrutist väljavektoriga. Esimene võrrand näitab, et ajas muutuv magnetväli tekitab pööriselise elektrivälja ja vastupidi, ning teine võrrand näitab, et ajas muutuv elektriväli tekitab pööriselise magnetvälja ja vastupidi.

Lainevõrrandi tuletuskäikRedigeeri

Kuna koordinaatsüsteem on valitud nii, et elektromagnetlaine levib  -telje suunas, siis elektrivälja rootori ehk nabla vektorkorrutise elektriväljatugevuse vektoriga saab kirjutada järgnevalt:

 

Faraday seadusest lähtuvalt saame võrduse:

 

Analoogse mõttekäiguga saab leida magnetinduktsiooni rootori ja Ampère'i-Maxwelli seaduse:

 

Võtame Faraday seadusest osatuletise koordinaadi   järgi ja kombineerime saadud tulemuse Ampère'i-Maxwelli seadusest saadud tulemusega, arvestades, et diferentsiaaloperaatorid kommuteeruvad (tuletiste võtmise järjekorra võib ümber vahetada):

 

Tulemuseks on lainevõrrand elektrivälja jaoks. Analoogse mõttekäiguga saab tuletada teise lainevõrrandi magnetvälja jaoks. Leiame Ampère'i-Maxwelli seadusest osatuletise koordinaadi   järgi ja kombineerime saadud tulemuse Faraday seadusega:

 

Tuletatud lainevõrrandid elektri- ja magnetvälja jaoks elektromagnetlaines on erijuhud kõikvõimalikest lainetest (helilained, mehaanilised ristlained vms)  , mis liiguvad  -telje suunas lõpliku kiirusega  :

 

Siit järeldub, et Maxwelli võrranditest tuletatud lainevõrrandis korrutis   annab valguse kiiruse pöördväärtuse ruudu, niisiis valguse kiirus avaldub järgmiselt:

 

Lainevõrrandite lahendRedigeeri

Lihtsaimad lahendid lainevõrranditele elektriväljatugevuse ja magnetinduktsiooni jaoks avladuvad kujul:

 
 ,

kus   on lainearv,   on ringsagedus ja   on elektromagnetlaine lainepikkus.

Leides elektriväljatugevuse funktsioonist osatuletise   järgi ja magnetinduktsiooni funktsioonist osatuletise   ehk aja järgi ja asendades need Faraday seadusesse, saame

 
 
 

Siinused taanduvad välja ja jääb alles:

 

Igal ajahetkel suhe   on konstantne ja võrdub vaguse kiirusega.

Laine energiaRedigeeri

Laine kui häiritus kannab endaga kaasas energiat. Lisaks sellele, et Poyntingi vektor   näitab elektromagnetlaine leviku suunda, on see defineeritud kui energiahulk, mis läbib ajaühikus laineleviku suunaga ristuvat ühikulist pinda. Poyngtingi vektori ühik on   ja definitsioonvalem avaldub järgmiselt:

 

Tasalaine korral, kui elektriväljatugevuse ja magnetinduktsiooni vektorid on omavahel risti, avaldub Poyntingi vektor kujul  . Poyntingi vektori ajaline keskmistamine annab tulemuseks laine kiiritustiheduse, mis annab tähtsa tulemuse, et elektriväljatugevuse või magnetinduktsiooni vektori amplituudväärtuse ruut on võrdeline kiiritustihedusega.

Oletame, et laine vastuvõtja asukohas avalduvad elektriväljatugevus ja magnetinduktsioon vastavalt   ja  . Pointingi vektori moodul saab kuju

 

Keskmistame saadud tulemuse üle perioodi  :

 ,

kus   on kiiritustihedus ehk intensiivsus. Elektrivälja tugevuse ja magnetinduktsiooni väärtusi elektromagnetlaine jaoks vahetult mõõta ei saa, küll aga saab mõõta kiiritustihedust, mis on proportsionaalne elektrivälja tugevuse või magnetinduktsiooni vektori amplituudväärtuse ruuduga.

ViitedRedigeeri

  1. Hecht, Eugene. "Optics". 5th edition, 2017. Vaadatud 01.06.2018.

Vaata kaRedigeeri