Erinevus lehekülje "Tšornobõli katastroof" redaktsioonide vahel

resümee puudub
P (Neptuunium teisaldas lehekülje Tšernobõli katastroof ümbersuunamise Tšornobõli katastroof asemele: KNAB)
{{keeletoimeta}}
[[Pilt:ChernobylMIR.jpg|thumb|TšernobõliTšornobõli satelliidipilt kosmosejaamalt "Mir" [[27. aprill]]il [[1997]].]]
'''Tšernobõli katastroof''', tuntud ka kui '''Tšernobõli tuumakatastroof''' ja '''Tšernobõli avarii''' (kasutatakse ka ukrainapärastvenepärast nimekuju ''Tšornobõl'Tšernobõl'''), oli avarii, mis leidis aset [[Nõukogude Liit|Nõukogude Liidus]], [[Ukraina NSV]]-s, [[Tšornobõli tuumaelektrijaam]]as 51°23′22″ N 30°05′59″ E [[26. aprill]]il [[1986]]. Avarii oli [[Rahvusvaheline tuumaintsidentide skaala|rahvusvahelise tuumaintsidentide skaala]] järgi 7. taseme õnnetus.
 
Tuumaelektrijaama 4. energiaploki reaktor plahvatas. Põhjused olid reaktori viimine ebastabiilsesse olekusse reaktori turvasüsteemide katsetamisel ning reaktori konstruktsiooni iseärasused. Ioniseeriva kiirguse tagajärjel said paljud inimesed [[Äge kiiritusmürgitus| ägeda kiiritusmürgituse]] ja surid.
 
== Õnnetusest ==
[[26. aprill|26. aprillil]] [[1986]] kell 1.23.40 öösel kasvas 4. reaktori võimsus reaktori peatamisel hüppeliselt. Võimsuse kasvades tekkis soojakolle. Plahvatuslikult kasvanud aururõhk purustas osaliselt reaktori. Mõne sekundi pärast järgnes teine, tugevam plahvatus. Plahvatused rebisid reaktorilt kaane ja purustasid osaliselt energiaploki hoone. Hoone katus hävis täielikult. Energiaplokk ei olnud ümbritsetud tugeva betoonkattega nagu lääne tuumajaamad, mis oleks takistanud reaktori plahvatamisel radioaktiivse aine laialipaiskumist. Reaktori purunemisega kaasnes suure koguse radioaktiivse aine paiskumine õhku. Purunenud reaktoris katkes jahutussüsteemi töö, mistõttu süttis reaktorisse allesjäänud grafiit. Grafiidi põlemine kandis purunenud reaktorist kümne päeva kestel välja suures koguses radioaktiivset ainet.
 
== Katsetuse planeerimine ==
25. aprilli keskpäeval oli kavas seisata 4. reaktor plaaniliseks hoolduseks. Seoses sellega otsustati katsetada reaktori turvasüsteeme.
[[RBMK-1000]] reaktor vajab pidevalt ringlevat vett senikaua, kuni tuumkütust jätkub. Ka reaktori avariilisel peatamisel peab jätkuma reaktori jahutusvee tsirkulatsioon.
Tuumajaama reaktoritel oli kolm varu-[[Diiselmootor|diisel]]generaatorit, mis pidid tagama veepumpade töö elektrikatkestuse korral, kuid need saavutasid veepumpade käigushoidmiseks vajaliku võimsuse 40-sekundilise viivitusega. Katsetuse käigus taheti kontrollida, kas reaktori avariilisel peatamisel suudab inertsist pöörlev auruturbiin anda piisavalt elektrit, et varugeneraatorite käivitumiseni hoida käigus reaktori veepumpi. Test viidi eelnevalt kahel korral läbi teistel reaktoritel, kuid negatiivsete tulemustega: turbiin ei genereerinud ergutusmähiste pingelanguse tõttu piisavalt kaua vajalikku võimsust. Turbiinidele tehti muudatusi ning oli vaja teha uusi katsetusi.
 
== Eelnenud tingimused ==
[[Pilt:Chernobylreactor 1.jpg|thumb|Tuumaelektrijaama 4. energiaplokk peale katastroofi betoonist sarkofaagiga kaetuna 2006. aastal]]
Plaanitud katsetustele tehti ettevalmistusi 25. aprilli päeval. Energiaploki võimsus oli 1 GW ning reaktori nominaalne soojuslik võimsus 3,2 GW. Katsetuse läbiviimiseks oli vajalik reaktori 700–800 MW-ni vähendatud võimsus. Energiaploki päevane meeskond vähendas reaktori võimsuse 200 MW-ni, aga sel ajal lülitus välja üks Kiievi piirkonna elektrijaam ning [[Kiiev|Kiievi]] elektrivõrgu dispetšer nõudis katsetuse edasilükkamist, sest elektrit oli tarvis õhtuse nõudluse katmiseks. Tuumajaama direktor lükkaski katsetuse edasi. 25. aprillil kell 23:04 lubas Kiievi dispetšer katsetust alustada. Ohutustesti läbiviimine jäi reaktori operaatorite õhtuse vahetuse, mis ei olnud selleks katsetuseks valmistunud, ülesandeks ning katsetuse oluline faas sattus õhtuse ja öise vahetuse vahetusajale. Õhtuse vahetuse meeskonnal oli vähe kogemusi RBMK-tüüpi reaktoritega, nad olid eelnevalt töötanud fossiilkütuse-elektrijaamades. Vahetuse juhtivinsener [[Anatoli Djatlov]] oli aga töötanud allveelaevade tuumareaktoritega ning osalenud ka eelmistel katsetel.
Reaktori võimsus suurenes 200 MW-ni, mis oli vähem kui kolmandik eksperimendi juhendis ette nähtust, aga piisav turbiini ja pumpade tööks, ning katset jätkati. Reaktori võimsuse edasist tõusu ei võimaldanud reaktori kiireist režiimimuutustest tingitud Xe-135 isotoopide rohkus. Operaatorid tõstsid käsitsijuhtimisel täiendavalt kontrollvardaid reaktorist välja, et tagada reaktori püsiv võimsus. Kell 1:05 öösel lülitasid operaatorid katse jätkamiseks sisse täiendavad veepumbad ning suurendasid vee voolu reaktoris rohkem kui ohutusnõuded lubavad. Veevool ületas ohutuspiiri kell 1:19 öösel ja kuna ka vesi neelab neutroneid, siis reaktori võimsus kahanes veelgi. Sellele reageeris võimsuse automaatregulaator ja viis reaktorist täiendavalt kontrollvardaid välja. See tekitas eriti ohtliku olukorra: enamus kontrollvarrastest eemaldati ja ainus, mis kontrollis reaktsiooni, olid reaktsiooni käigus tekkivad Xe-135 isotoobid. Reaktori reaktiivsuse varu hinnang osutus valeks, sest operaatorid ei teadnud, et RBMK reaktori veeauru-reaktiivsus on reaktori väikesel võimsusel nii suur, kui see oli. Katastroofijärgsete mudelarvutuste ja katsetega selgus, et reaktoril oli sellel võimsustasemel väga kõrge positiivne veeauru-reaktiivsus.
 
== Saatuslik eksperiment ==
Kell 1:23:04 alustasid reaktori operaatorid plaanitud eksperimenti. Reaktori ebastabiilset olekut juhtpaneelilt ei märgatud ja tundub, et keegi reaktori-rühmast ei olnud ohust teadlik. Turbiine käitav aur lülitati välja ja käivitati veepumpade diiselgeneraatorid, mis saavutasid vajaliku pöörlemiskiiruse kell 1:23:43. Turbiinide pöörlemiskiiruse kahanedes kahanes veepumpade tootlikkus, mis vähendas reaktori jahutust ning suurendas reaktori tuumas auru teket. Kontrollvarraste kanaleis tekkisid aurutaskud. Need protsessid tekitasid reaktoris positiivse reaktiivsuse ja reaktori võimsus hakkas kasvama. Reaktori võimsuse kasvades hakkasid Xe-135 isotoobid põlema kiiremini kui I-135 isotoobid lagunesid, mis omakorda suurendas reaktori võimsust. Sel ajal suutis võimsuse automaatregulaator võimsuse kasvu kompenseerida. Reaktori juhtpuldis ei olnud ühtegi signaali reaktori ebastabiilsest olekust.
 
Kontrollvarraste sisestusmehhanism oli aeglane. Kontrollvarraste viimine täies ulatuses reaktori tuuma kestis 18–20 sekundit. Kontrollvarraste disaini eripära vähendas varraste allaliikumisel algselt neutronite neelamist varraste alumise otsa juures. See viis selleni, et SCRAM tegelikult suurendas reaktsiooni võimsust reaktori alaosas. Mõni sekund pärast AZ-5 sisselülitumist hakkas reaktori võimsus hüppeliselt kasvama. Siis hakkasid purunema kütusevardad ja ummistusid kontrollvarraste kanalid. Kontrollvardad kiilusid kinni, kui nad olid sisestatud alles 1/3 ulatuses, ning seega oli reaktsiooni võimatu peatada. 3 sekundiga kasvas reaktori võimsus üle 530 MW. Auru rõhk kasvas plahvatuslikult ja purustas jahutustorud. Mõne sekundi pärast järgnes teine, tugevam plahvatus, mille põhjus on ühe teooria järgi kriitilise massi ületamine mõnes purunenud reaktori osas. Teine võimalik seletus on nö keemiline plahvatus - suures kuumuses vesi lagunes vesinikuks ja hapnikuks ja plahvatas, saades välisõhust hapnikku lisaks. Hinnanguliselt kasvas reaktori võimsus enne plahvatust 30 GW-ni, ületades kell 1:23:47 ligi kümme korda reaktori nimivõimsust. Plahvatus paiskas minema reaktori kaane ja pühkis minema energiaploki katuse. Plahvatuse käigus ülekuumenenud grafiit süttis ja laialipaiskuvad põleva grafiidi tükid tekitasid mitu tulekahjukollet naaberkorpustel, mille katused olid üle valatud bituumeniga. Grafiidi põlemine purunenud reaktoris aitas kaasa radioaktiivse materjali laialikandumisele ning seega lähedalolevate piirkondade saastumisele.
 
Djatlov väidab oma raamatus, et reaktori operaatorid ei rikkunud katsetuse käigus ühtegi reaktori juhtimise reeglit<ref name="KXU5m" />. Katse läbiviimise juhisest<ref name="acQfH" /> oli kaks olulist kõrvalekallet. Katseks valmistudes kahanes reaktori võimsus plaanitust väga palju väiksemaks ilmselt operaatori eksimuse tõttu, aga ka võimsuse regulaatori ebastabiilsuse tõttu reaktori väikesel võimsusel. Katse alustamiseks ei kasvatatud reaktori võimsust 700 MW-ni. Reaktori juhend ei lubanud reaktori võimsust 700 MW-ni kasvatada kiiremini kui poole tunniga ning reaktori omavajadusteks piisas 200 MW võimsusest. Kuivõrd reaktor oli kavas nagunii peatada, piirduti võimsuse kasvatamisega 200 MW-ni.
Djatlov väidab oma raamatus, et reaktori operaatorid ei rikkunud katsetuse käigus
ühtegi reaktori juhtimise reeglit<ref name="KXU5m" />. Katse läbiviimise juhisest<ref name="acQfH" /> oli kaks olulist kõrvalekallet. Katseks valmistudes kahanes reaktori võimsus plaanitust väga palju väiksemaks ilmselt operaatori eksimuse tõttu, aga ka võimsuse regulaatori ebastabiilsuse tõttu reaktori väikesel võimsusel. Katse alustamiseks ei kasvatatud reaktori võimsust 700 MW-ni. Reaktori juhend ei lubanud reaktori võimsust 700 MW-ni kasvatada kiiremini kui poole tunniga ning reaktori omavajadusteks piisas 200 MW võimsusest. Kuivõrd reaktor oli kavas nagunii peatada, piirduti võimsuse kasvatamisega 200 MW-ni.
 
Plahvatuseni viisid kiiretest režiimimuutustest tingitud reaktori ebastabiilne olek, millest ei andnud tunnistust ükski kontrollseade, ja reaktori konstruktsiooni iseärasused. Reaktori suured mõõtmed raskendasid kogu reaktori ulatuses vajaliku režiimi tagamist. Reaktor oli väikesel võimsusel positiivse reaktiivsusega (see polnud reaktori operaatoritele teada). Mis peamine, reaktori kontrollvarraste grafiitotsad tekitasid reaktori positiivse reaktiivsuse ning varraste väike liikumiskiirus
jättis aega võimsuse kontrollimatuks kasvuks kontrollvarraste alumise otsa juures.
 
== Katastroofi ulatus ==
[[Pilt:Chernobyl radiation map 1996.svg|thumb|Tšernobõli katastroofiKatastroofi tõttu saastatud ala]]
Reaktorist välja paiskunud radioaktiivne pilv saastas suured alad Ukrainas, Venemaal ning eriti Valgevenes. Laiali paisatud radioaktiivse aine hulk ületas nelisada korda Hiroshima pommitamisel tekkinut. Atmosfääri paisati umbes pool reaktoris olnud radioaktiivsest joodist (I-131 poolestusaeg on 8 päeva), väga pika poolestusajaga tseesium-137 ja strontsium-90 (Cs-137 poolestusaeg on 30 aastat, Sr-90-l 29 aastat) ja mitmeid teisi lühema poolestusajaga isotoope (Cs-134, Zr-95, Nb-95, Xe, Ba-140, La-140). Saastatud piirkondadest evakueeriti üle 300 000 inimese. Saaste riivas kergelt ka mõningaid Eesti piirkondi.
 
== Seos Eestiga ==
[[Pilt:View of Chernobyl taken from Pripyat.JPG|thumb|Vaade Tšornobõlile Prõpjatist]]
Tšornobõli avariiAvarii tagajärgede likvideerimiseks kaeti aja jooksul lekkiv (kiiritav) energiaplokk betoonsarkofaagiga, mille ehitamisel osalesid ka Eestist "[[kordusõppused|kordusõppustele]]" kutsutud sõjaväekohuslased. Tagajärgede likvideerimiseks loodud staabi ülem oli Eesti NSV [[tsiiviilkaitse]] juht [[Vello Vare]].<ref name="Om3wi" />
 
Ümber plahvatanud reaktori ehitati betoonsarkofaag. [[Prõpjat]]i [[linn]], kus elas põhiliselt tuumajaama personal, evakueeriti ja likvideeriti kõrge saasteastme tõttu. Jaama personali tarbeks rajati jaamast umbes 50 km ida poole uus linn [[Slavutõtš]].