Ava peamenüü

Muudatused

resümee puudub
[[Pilt:Componentes.JPG|thumb|KomponendidElektroonikakomponente]]
'''Elektroonika''' on teadus [[elektrienergia]] juhtimisest elektrilisel teel, milles [[elektron]]<nowiki/>idel on fundamentaalne roll. Elektroonikat kui teadust peetakse [[füüsika]] ja [[elektrotehnika]] haruks.<ref>{{Cite web|last=|first=|url=https://www.britannica.com/technology/electronics|title= Electronics, Encyclopædia Britannica|publisherlast=Encyclopædia Britannica|websitefirst=|date=September 2016|website=|publisher=Encyclopædia Britannica|access-date=}}</ref><ref>{{Cite web|last=|first=|url=https://en.oxforddictionaries.com/definition/electronics|title= Electronics definition, Oxford Dictionary|publisherlast=Oxford University Press|websitefirst=|date=Veebruar 2017|website=|publisher=Oxford University Press}}</ref>
 
Elektroonika tegeleb [[Elektrilised ahelad|elektriliste ahelatega]], mis sisaldavad [[Aktiivsed elektrilised komponendid|aktiivseid elektrilisi komponente]] (nagu näiteks [[Elektrovaakumseadis|vaakumlambid]], [[transistor]]<nowiki/>id, [[diood]]<nowiki/>id, [[integraallülitus]]<nowiki/>ed, [[optoelektroonika]] seadmed ja [[andur]]<nowiki/>id), sellega seotud [[Passiivsed elektrilised komponendid|passiivseid elektrilisi komponente]], ja nende omavahel ühendamise tehnoloogiatega.
 
Tavaliselt sisaldavad elektroonikaseadmed peamiselt või eranditult aktiivsetest pooljuhtseadistest koosnevaid vooluahelaid, mida on täiendatud passiivsete elementidega. Sellist vooluahelat käsitletakse kui [[elektronahel]]<nowiki/>at (-[[lülitus]]<nowiki/>t).
 
Aktiivsete komponentide mittelineaarne käitumine ([[tunneldiood]]) ja nende juures avalduv elektronide voogude juhtimise ([[Hall'i effektefekt]]) või voolu suuruse juhtimise ([[triood]], [[transistor]]) võimalus muudab võimalikuks nõrkade signaalide [[Võimendamine|võimendamise]] ja [[Signaali muundamine|signaalide muundamise]].
 
Elektroonikat kasutatakse laialdaselt [[Informatsiooni töötlemine|informatsiooni töötlemise]]<nowiki/>s, [[telekommunikatsioon]]<nowiki/>is ja [[signaalitöötlus]]<nowiki/>es.
 
Elektronseadiste suutlikkus toimida [[lüliti]]<nowiki/>tena (''switch'') teeb võimalikuks [[Digitaalne signaal|digitaalse signaali]] töötlemise.
 
Ühendamise tehnoloogiad, nagu [[Trükkplaat|trükkplaadid]], elektroonika pakendamise tehnoloogia ja muud erinevad ühendamise infrastruktuuri lahendused, annavad ahelale funktsionaalsuse ja muudavad segamini kasutatud ja omavahel ühendatud komponendid regulaarseks töötavaks süsteemiks.
 
Elektroonika eristub elektrialasest ja elektromehaanikaalasest teadusest ja tehnoloogiast, mis tegelevad elektrienergia genereerimise, jaotamise, lülitamise, salvestamisega ning muundamisega teistest energiavormidest või ka teisteks energiavormideks, kasutades juhtmeid, mootoreid[[mootor]]eid, generaatoreid[[generaator]]eid, patareisid[[patarei]]sid, [[lüliti|lüliteid]], releesid[[relee]]sid, transformaatoreid[[transformaator]]eid, [[takisti|takisteid]] ja muid passiivseid komponente. See eristumine algas 1906. aasta paiku, kui [[Lee De Forest]] leiutas [[triood]]<nowiki/>i, mis muutis võimalikuks [[Võimendamine|võimendada]] [[raadiosignaal]]<nowiki/>e ja [[helisignaal]]<nowiki/>ehelisignaale mitte-mehaanilise seadme abil. Kuni 1950. aastani kutsuti seda ala [[raadioelektroonika]]<nowiki/>ks (''radio engineering''), kuna selle põhiline rakendus oli [[raadiosaatja]]<nowiki/>te ja [[Raadiovastuvõtja|vastuvõtjate]] väljatöötamine ja teooria. Elektroonika selle tänapäevasemas mõttes oli sellelaga selle perioodil [[Elektrovaakumseadis|vaakuumlamp]]<nowiki/>ide teooria ja kasutamine.
 
Tänapäeval kasutab enamik elektroonilisi seadmeid elektroonilise kontrolli teostamiseks [[pooljuht]]<nowiki/>komponente.
 
Pooljuhtseadmete toimimise füüsikaliste põhimõtetega ja nende valmistamise tehnoloogiaga seotud uurimist peetakse [[Tahkisefüüsika|tahkete kehade füüsika]] haruks, samas kui praktiliste probleemide lahendamiseks mõeldud [[Elektroonsed ahelad|elektrooniliste ahelate]] väljatöötamine ja ehitamine kuulub [[elektroonikainseneeria]] alla. See artikkel keskendub elektroonika rakendustehnoloogilistele aspektidele.
 
Pooljuhtseadmete toimimise füüsikaliste põhimõtetega ja nende valmistamise tehnoloogiaga seotud uurimist peetakse [[Tahkisefüüsika|tahkete kehade füüsika]] haruks, samas kui praktiliste probleemide lahendamiseks mõeldud [[Elektroonsed ahelad|elektrooniliste ahelate]] väljatöötamine ja ehitamine kuulub [[elektroonikainseneeria]] alla. See artikkel keskendub elektroonika rakendustehnoloogilistele aspektidele.
==Elektroonika harud==
 
 
==Elektroonilised seadmed ja komponendid==
 
[[Elektrooniline komponent]] on füüsiline üksus [[Elektrooniline süsteem|elektroonilises süsteemis]], mida kasutatakse elektronide või nendega seotud väljade mõjutamiseks vastavalt elektroonilise süsteemi kavandatud funktsioonile. Konkreetsete funktsioonide (näiteks [[võimendi]], [[raadiovastuvõtja]] või [[ostsillaator]]<nowiki/>i) loomiseks mõeldud komponendid on üldjuhul ette nähtud omavahel ühendamiseks, tavaliselt [[Trükkplaat|trükkplaadtrükkplaadile]]<nowiki/>ile jootmise teel. Komponendid võivad olla pakitud üksikult või keerukamate rühmade kujul [[integralskeem]]<nowiki/>idena. Levinud elektroonikakomponendid on kondensaatorid, induktiivpoolid, takistid, dioodid, transistorid jne. Komponendid liigitatakse tihti aktiivseteks (nt transistorid ja türistorid[[türistor]]id) või passiivseteks (näiteks takistid, dioodid, induktiivpoolid ja kondensaatorid).
 
==Elektrooniliste komponentide ajalugu==
Vaakumlambid olid esimesed elektroonilised komponendid, kuigi esimeseks [[Elektroonikaseade|elektroonikaseadmeks]] võib pidada ka [[röntgenkiiretoru]].<ref>{{Cite journal|last=Guarnieri|first=M.|date=2012|title=The age of vacuum tubes: Early devices and the rise of radio communications|journal=IEEE Ind. Electron. M.|volume=6|issue=1|pages=41–43|doi=10.1109/MIE.2012.2182822|ref=harv}}</ref> Nemad määrasid peaaegu täielikult kahekümnenda sajandi esimese poolel toimunud elektroonikarevolutsiooni käigu.<ref>{{Cite journal|last=Guarnieri|first=M.|date=2012|title=The age of vacuum tubes: the conquest of analog communications|journal=IEEE Ind. Electron. M.|volume=6|issue=2|pages=52–54|doi=10.1109/MIE.2012.2193274|ref=harv}}</ref><ref>{{Cite journal|last=Guarnieri|first=M.|date=2012|title=The age of Vacuum Tubes: Merging with Digital Computing|journal=IEEE Ind. Electron. M.|volume=6|issue=3|pages=52–55|doi=10.1109/MIE.2012.2207830|ref=harv}}</ref> Nemad viisid elektroonika algelise lõbustuse tasemelt edasi, andes meile [[raadio]], [[televisioon]]<nowiki/>i, [[helisalvestus]]<nowiki/>e, [[radar]]<nowiki/>id, [[telefonikaugside]] ja palju muud. Kuni 1980. aastate keskpaigani mängisid nad juhtivat rolli [[mikrolainetehnika]] ja kõrgepingeülekande ning [[televisioonivastuvõtjate]] ([[televiisor]]<nowiki/>ite) valdkonnas.<ref name="Okamura1994">{{cite book|author=Sōgo Okamura|title=History of Electron Tubes|url=https://books.google.com/books?id=VHFyngmO95YC&pg=PR4|year=1994|publisher=IOS Press|isbn=978-90-5199-145-1|page=5}}</ref> Vaakumlampe kasutatakse endiselt mõnes erirakenduses, näiteks suure võimsusega raadiosagedusvõimendid, elektronkiiretorud, spetsiaalsed heliseadmed, kitarrivõimendid ja mõned mikrolaineseadmed.
 
Vaakumlambid olid esimesed elektroonilised komponendid, kuigi esimeseks [[Elektroonikaseade|elektroonikaseadmeks]] võib pidada ka [[röntgenkiiretoru]].<ref>{{Cite journal|last=Guarnieri|first=M.|date=2012|title=The age of vacuum tubes: Early devices and the rise of radio communications|journal=IEEE Ind. Electron. M.|volume=6|issue=1|pages=41–43|doi=10.1109/MIE.2012.2182822|ref=harv}}</ref> Nemad määrasid peaaegu täielikult kahekümnenda sajandi esimese poolel toimunud elektroonikarevolutsiooni käigu.<ref>{{Cite journal|last=Guarnieri|first=M.|date=2012|title=The age of vacuum tubes: the conquest of analog communications|journal=IEEE Ind. Electron. M.|volume=6|issue=2|pages=52–54|doi=10.1109/MIE.2012.2193274|ref=harv}}</ref><ref>{{Cite journal|last=Guarnieri|first=M.|date=2012|title=The age of Vacuum Tubes: Merging with Digital Computing|journal=IEEE Ind. Electron. M.|volume=6|issue=3|pages=52–55|doi=10.1109/MIE.2012.2207830|ref=harv}}</ref> Nemad viisid elektroonika algelise lõbustuse tasemelt edasi, andes meile [[raadio]], [[televisioon]]<nowiki/>i, [[helisalvestus]]<nowiki/>e, [[radar]]<nowiki/>id, [[telefonikaugside]] ja palju muud. Kuni 1980. aastate keskpaigani mängisid nad juhtivat rolli [[mikrolainetehnika]] ja kõrgepingeülekande ning [[televisioonivastuvõtjate]] ([[televiisor]]<nowiki/>ite) valdkonnas.<ref name="Okamura1994">{{cite book|author=Sōgo Okamura|title=History of Electron Tubes|url=https://books.google.com/books?id=VHFyngmO95YC&pg=PR4|year=1994|publisher=IOS Press|isbn=978-90-5199-145-1|page=5}}</ref> Vaakumlampe kasutatakse endiselt mõnes erirakenduses, näiteks suure võimsusega raadiosagedusvõimendid, elektronkiiretorud, spetsiaalsed heliseadmed, kitarrivõimendid ja mõned mikrolaineseadmed.
[[Transistor]]<nowiki/>ide leiutamise, arendamise ja massilisse tootmisesse jõudmise järel võeti need elektronlampide asemel kasutusele ja paarikümne aastaga olid nad elektronlampide asemel praktiliselt kasutusel kõikjal. Väikese energiatarbe tõttu (nad ei vaja katoodi kütet) tekkis võimalus realiseerida seadmeid, mis lampide abil teostatuna olid mõeldamatud ([[Implanteeritavus|implanteeritav]]<nowiki/>ad [[meditsiinielektroonika]] seadmed jms.).
 
[[Transistor]]<nowiki/>ide leiutamise, arendamise ja massilisse tootmisesse jõudmise järel võeti need elektronlampide asemel kasutusele ja paarikümne aastaga olid nad elektronlampide asemel praktiliselt kasutusel kõikjal. Väikese energiatarbe tõttu (nad ei vaja katoodi kütet) tekkis võimalus realiseerida seadmeid, mis lampide abil teostatuna olid mõeldamatud ([[Implanteeritavus|implanteeritav]]<nowiki/>ad [[meditsiinielektroonika]] seadmed jms.).
Mõõtmete väiksuse tõttu võeti transistorid kasutusele ka [[Arvutustehnilised seadmed|arvutustehnilistes seadmetes]]. 1955. aasta aprillis valminud laua-arvuti IBM 608 oli esimene IBM-i toode, milles kasutati ainult transistore ilma ühegi vaakumlambita, ja seda peetakse esimeseks täielikult transistoridel toimivaks kommertsturule toodetud arvutusmasinaks. 608 sisaldas üle 3000 germaaniumtransistori. Thomas J. Watson Jr andis korralduse kasutada transistore kõigi tulevaste IBMi toodete väljatöötamisel. Sellest ajast alates kasutati arvutiloogika seadmete ja välisseadmete puhul peaaegu eranditult transistore.
 
Mõõtmete väiksuse tõttu võeti transistorid kasutusele ka [[Arvutustehnilised seadmed|arvutustehnilistes seadmetes]]. 1955. aasta aprillis valminud laua-arvuti [[IBM 608]] oli esimene IBM-i toode, milles kasutati ainult transistore ilma ühegi vaakumlambita, ja seda peetakse esimeseks täielikult transistoridel toimivaks kommertsturule toodetud arvutusmasinaks. 608 sisaldas üle 3000 germaaniumtransistori. Thomas J. Watson Jr andis korralduse kasutada transistore kõigi tulevaste IBMi toodete väljatöötamisel. Sellest ajast alates kasutati arvutiloogika seadmete ja välisseadmete puhul peaaegu eranditult transistore.
 
==Ahelate tüübid==
 
Ahelaid ja komponente saab jagada kahte rühma: analoogsed ja digitaalsed. Seade võib koosneda lülitustest, mis on üht või teist ​​tüüpi või mõlema tüübi segu.
 
===Analoogahelad===
[[{{Vaata|Analoogelektroonika]]}}
 
Enamik elektroonilisi analoogseadmeid, näiteks [[raadiovastuvõtja]]<nowiki/>d, on üles ehitatud vaid paari liiki põhiahela kombinatsioone kasutamise peal. Analoogahelad kasutavad pidevat pinge- või vooluvahemikku, erinevalt diskreetsete tasemete kasutamisest digitaalsetes ahelates.
 
Seni välja töötatud erinevate analoogahelate arv on tohutu, eriti seetõttu, et "ahela” määratlus võib ulatuda ühest komponendist kuni tuhandeid komponente sisaldavate süsteemideni.
 
Analoogahelat nimetatakse mõnikord lineaarseks, kuigi analoogahelates kasutatakse mitmeid mittelineaarseid efekte, nagu [[segusti]]<nowiki/>tes, [[modulaator]]<nowiki/>ites jne. Analoogahelate headeks näideteks on vaakum[[Lampvõimendi|lamp-]] ja [[transistorvõimendi]]<nowiki/>d, [[operatsioonvõimendi]]<nowiki/>d ja [[ostsillaator]]<nowiki/>id.
 
Nüüdisajal leiab harva ahelaid, mis on täiesti analoogsed. Tänapäeval võivad analoogsüsteemid kasutada digitaalseid mikroprotsessortehnoloogiaid ([[Digitaalne signaaliprotsessor|digitaalseid signaaliprotsessoreid]] ehk [[DSP]]<nowiki/>-sid).
 
Mõnikord võib olla raske eristada analoog- ja digitaalahelaid, kuna nad teostavad signaalidega nii lineaarseid kui ka digitaalsusele iseloomulikke mittelineaarseid toiminguid. Näiteks on signaali [[Komparaator (analoogtehnika)|komparaator]], mis võtab sisse pideva analoogpinge, kuid väljastab ainult kahte taset, nagu see on digitaalahelas. Sarnaselt võib ülekoormatud [[transistorvõimendi]] väljund omandada juhitava loogilise lüliti ehk [[Loogikalüli|loogkalüli]] väljundi omadusi, millel on sisuliselt kaks väljunditaset. Tegelikult on paljud digitaalsed lülitused analoogahelate variandid, mis on rakendatud sarnaselt selle näitega. Lõppude lõpuks on ju kõik tegeliku füüsilise maailma aspektid põhiliselt analoogsed, nii et digitaalseid efekte saab realiseerida ainult analoogkäitumise piiramise teel.
 
===Digitaalahelad===
[[{{Vaata|Digitaalelektroonika]]}}
 
Digitaalsed ahelad on elektrilised ahelad, mis põhinevad kahe või enama diskreetse pingetaseme (kokkuleppelise või tehnilise lahendusega ära määratud, näiteks [[TTL]], [[CMOS]] jne.) ehk nivoo kasutamisel. Kahetasemelised (tinglikult "0" ja "1") digitaalahelad on [[Boole'i algebra|Boole’i algebra]] kõige levinumaid füüsilisi esitusi, mis on kõigi [[kahendsüsteem]]<nowiki/>is töötavate [[digitaalarvuti]]<nowiki/>te aluseks.
 
Binaarset süsteemi on kasutatud enamikus digitaalsetes ahelates. Binaarsetel digitaalsetel ahelatel on kaks pingetaluvust, mida märgistatakse kui "0" ja "1". Sageli vastab loogilisele "0"-le madalam pinge ja seda nimetatakse "madalaks", samal ajal kui loogilisel "1"-le vastab kõrge nivoo. Kuid mõnedes süsteemides kasutatakse vastupidist määratlust ("0" on "kõrge" ja "1" on "madal") või siis on toite polaarsus erinev (tavalisest positiivsest), või siis on nad üldse [[voolusignaal]]<nowiki/>i põhised. Üsna sageli võib loogika disainija neid määratlusi ümber pöörata üleminekul ühelt ahelalt teisele, kui ta peab seda disaini hõlbustamiseks vajalikuks. Nii et tasemete määratlus "0" või "1" on mõnevõrra meelevaldne.
 
Ternaarset (kolme oleku või signaali nivoo kasutamisega) loogikat on uuritud ja mõned sellised prototüüparvutid on ka loodud.
 
Arvutid, elektroonilised kellad ja programmeeritavad loogikakontrollerid (kasutatakse tööstusprotsesside juhtimiseks) on ehitatud digitaalsetest ahelatest. Teiseks näiteks on digitaalsed [[signaalitöötlus]]<nowiki/>e vahendid ([[DSP]]<nowiki/>d jms.).
 
Komponendid:
 
== Viited ==
{{ReflistViited}}