Elektronkiiretoru: erinevus redaktsioonide vahel

Eemaldatud sisu Lisatud sisu
PResümee puudub
Resümee puudub
1. rida:
'''Elektronkiiretoru''' ehk '''katoodkiiretoru''' ([[inglise keel|ingl]] ''cathode ray tube'', lühend CRT) on [[elektrovaakumseadis]], mille tekitatud ühe või mitme terava elektronkiire asendit ja [[intensiivsus]]t tüüritakse [[elektriväli|elektri-]] ja [[magnetväli|magnetväljaga]].
{{viita}}[[Pilt:CRT color enhanced.png|thumb|'''Elektronkiiretoru ehitus:'''
</br> 1. elektronrelvad,
</br> 2. elektronkiir,
</br> 3. fokuseerimisvärten,
</br> 4. hälvevärten,
</br> 5. anood,
</br> 6. värvieraldusfilter,
</br> 7. luminofoorid,
</br> 8. värvide filter suures plaanis]]
 
Elektronkiiretorude kõige laiemalt tuntud liik on kineskoop, mis muundab [[videosignaal]]i [[ekraan]]il nähtavaks kujutiseks. Kineskoope kasutati [[teler]]ites ja [[kuvar]]ites kuni käesoleva sajandi esimeste aastateni.
'''Elektronkiiretoru''' ([[inglise keel]]es ''cathode ray tube'', lühend '''CRT''') on üks [[elektronseade|elektronseadmete]] liike, mis on ette nähtud elektriliste signaalide muundamiseks optiliseks kujutiseks.
 
Elektronkiiretoru teine tähtis rakenduskoht oli [[ostsilloskoop]], mida kasutatakse kiiresti muutuvate [[elektripinge]]te ja [[elektrivool|-voolude]] jälgimiseks.
==Tööpõhimõte==
[[Optiline kujutis]] saadakse peene [[elektronkiir]]e põrkumisel vastu ekraani, mille [[luminofoor]]iga kaetud kiht jätab elektronkiire liikumise teest nähtava jälje. Elektronkahuris moodustunud peen suunatud elektronkiir liigub ekraanil vastavalt hälvitussüsteemi toimele.
 
[[Pilt:Crt14.jpg|pisi|Kineskoop (näha on ka hälvituspoole ja elektroodisüsteemi)]]
==Koostisosad==
Elektronkiiretoru koosneb [[Elektronkahur|elektronkahurist]], [[hälvitussüsteem]]ist, [[ekraan]]ist ja kestast (kolvist).
 
== Kineskoobid ==
Elektronkahur koosneb katoodist, tüürelektroodist, mille [[Pinge (elekter)|pingega]] reguleeritakse elektronkiire voolu, ja teravustamis- ehk fokuseerimissüsteemist, mille toimel [[elektron]]id koondatakse kiireks.
Kineskoobi põhiosad on
*elektronikahur, mis paikneb klaaskolvi silindrilises osas ja tekitab vajalikus suunas liikuvate elektronide joa – elektronkiire; kiire elektronid fokuseeritakse ekraanile terava täpina elektronikahuri elektronläätsede abil.
*hälvitussüsteem, mis kallutab elektronkiirt sellisel viisil, et moodustuvad üksikpildid – kaadrid; see süsteem on kineskoopides elektromagnetiline ([[induktiivpool]]idega), erinevalt ostsilloskoobitorudest, kus kiirt kallutatakse elektrostaatiliselt hälvitusplaatidega;
*ekraan, mis paikneb toru laial otspinnal ja millele elektronkiir jätab helendava jälje.
 
[[Pilt:elektroodisüsteem.png|pisi|400px|Kineskoobi elektroodisüsteem]]
Hälvitussüsteem, mis paneb elektronkiire ekraanil liikuma, koosneb horisontaal- ja vertikaalhälvitussüsteemist, mille abil on võimalik kiirt juhtida igasse ekraani punkti.
 
=== Kineskoobi elektroodisüsteem ===
Ekraan moodustatakse kesta sisekülje katmisega [[fluorestsents|fluorestseeriva]] ainega.
Elektronikahuris tekitab elektronkiire topsikujuline nikkelel[[katood]], mille otspinnale on kantud [[elektron]]e emiteeriv (väljutav) [[oksiid]]ikiht. Topsi sees on [[volfram]]ist kütteniit. Küttepingel 6,3 V kuumutab kütteniit katoodi temperatuurini kuni 850 °C.
 
Katoodi emiteeriva pinna lähedal paikneb silindriline tüürelektrood ehk modulaator. Sellele antakse katoodi suhtes püsiv negatiivne pinge – eelpinge. Videosignaali pinge, mis muudab elektronkiire voolu signaali taktis, rakendatakse katoodi ja modulaatori vahele.
==Elektronkiire fokuseerimine==
Elektronkiirt on võimalik fokuseerida kas elektri- või magnetvälja toimega. Tänapäevastes elektronkiiretorudes kasutatakse ainult esimest. Fokuseerimissüsteemis toimub katoodi emiteeritud elektronide kiirendamine ja koondamine ekraanile fokuseeritud peeneks kiireks. See toimub ebaühtlase elektrivälja abil, mis tekitatakse negatiivselt pingestatud tüürelektroodi ja positiivselt pingestatud anoodide vahel. Tekkiva ebaühtlase elektrivälja abil kujundatakse kahe
läätsesüsteemi abil optiline kujutis.
 
Katood, modulaator ja kiirenduselektrood moodustavad esimese koondav elektrostaatilise läätse, kus kiir aheneb ja uuesti laieneb. Edasi teravdab kiirt peafokuseerimissüsteem. Selle moodustavad fokuseerimiselektroodid, mida nimetatakse esimeseks ja teiseks [[anood]]iks.
Niisiis koosneb fokuseerimissüsteem nagu kahest läätsesüsteemist. Kumbki süsteem omakordakoosneb koondavast ja hajutavast läätsest. Tervikuna on aga mõlemad läätsesüsteemid koondava toimega.
 
Kineskoobi koonilise osa sisepind on kaetud juhtiva grafiidikihiga – akvadaagiga, mis ühendab ekraani teise anoodiga. Sellele anoodile antakse positiivne kõrgepinge kuni 30 000 volti koonuseosas oleva kontakti kaudu. Teised elektroodid on ühendatud kineskoobi sokli kontakttihvtidega.
Esimene läätsesüsteem, mis kujuneb [[tüürelektrood]]i ja esimese [[anood]]i vahel, on lühikese [[fookuskaugus]]ega. Teine läätsesüsteem, mis tekib kahe anoodi vahel, on pika fookuskaugusega (fokuseerib kiire ekraanile). Fookuse reguleerimine toimub esimese anoodi pinge reguleerimisega, mille pinge on 0,125–0,25 V teise anoodi pingest. Teise anoodi pinge tekitatav elektriväli on põhiline elektronide kiirendi. Tema väärtus sõltub elektronkiiretoru mõõtmetest ja liigist ning on vahemikus 1,5–25 kV.
 
Kirjeldatud mustvalge kineskoobi elektronikahuri ehituse ja talitluse põhimõtted kehtivad ka värvikineskoopide korral.
Elektronid kui samanimelised laengud tõukuvad omavahel. See ilmneb elektronide suurte tiheduse puhul kiires, mil tekib kiire hajumine. Sellest tulenevalt on elektronide "joonistatud" joon ekraanil kiire suure helenduse korral halvemini fokuseeritud. Kuna kiire voolu (heleduse) reguleerimine toimub tüürelektroodi pingega, siis heleduse reguleerimisel kipub muutuma ka fookus. Selle nähtuse vastu aitab täiendava nn kiirendusanoodi A1 kasutamine, mis paigutatakse tüürelektroodi ja esimese anoodi vahele ning millele antakse püsivalt positiivne [[Pinge (elekter)|pinge]].
 
=== Elektronkiire hälvitamine ===
==Hälvitussüsteemid==
Hälvitussüsteemi rea- ja kaadripoolidest lastakse läbi saehambakujulise graafikuga vool, mis tekitab muutuva magnetvälja selliselt, et elektronkiir hakkab ekraanil liikuma edasi-tagasi rõhtsihis (piki ridu) ja samuti püstsihis (realt reale). Niimoodi liikuv kiir joonistab ekraanile üksikpildi, mis vahetub [[televisioonisüsteem |analoogtelevisiooni]] videosignaali korral 25 korda sekundis (tegelikult poolpildid 50 korda sekundis), vt ka [[Teler#Kineskooptelerid |Kineskooptelerid]].
Füüsikakursusest on teada, et elektronide liikumise trajektoori saab mõjutada nii
elektri- kui ka magnetväljaga. Sellest tulenevalt on olemas nii elektrostaatilised kui ka
magnetilised hälvitussüsteemid.
 
Kineskoobi kaelaosal paiknev rõngakujuline [[püsimagnet]] võimaldab kaadrit tsentreerida, s.t ühitada hälvituskese elektronikahuri teljega.
Elektrostaatilises hälvitussüsteemis toimub elektronkiire hälvitamine ehk
kallutamine (inglise ''deflection'') elektrivälja mõjul. Selleks paigutatakse elektronkiire teele
kaks paralleelset plaati, mille pingestamisega tekitatakse elektronkiirt kallutav elektriväli.
 
Elektromagnetiline hälvitus võimaldab kallutada kiirt kuni 110° ulatuses. Mida suurem on hälvitusnurk, seda lühema kineskoobi saab valmistada.
Elektronkiire hälvitamiseks nii x- kui ka y-telje sihis kasutatakse kaht plaatide paari,
mis on paigutatud teineteise suhtes risti. Saamaks ekraanil kujutist, mis täpselt järgiks
uuritava pinge muutusi, peab kiire nihkumine ekraanil olema võrdeline plaatidel
mõjuva pingega. Elektronkiire ekraanil toimuva nihke ja seda põhjustanud pinge suhet nimetatakse
hälvitussüsteemi tundlikkuseks
 
=== Ekraan ===
<math>\delta = \frac{\Delta}{U}</math> mm/V
Ekraaniks on toru paksu klaaspõhja sisekülge kattev [[luminofoor]]ikiht. Elektronkiiretorudes kasutatakse kõrgepingelist (kuni 30 kV) katood[[luminestsents]]i. Kõrge pinge mõjul kiirendatud suure energiaga elektronid pommitavad luminofoori, mille juures teatav osa aatomeid läheb kõrgemale energiatasemele. Nende aatomite siirdumisel tagasi lähtetasandile tekib valguskiirgus.
 
Ekraani helenduse värvus valitakse mustvalgekineskoopidel valge; see saadakse kollase ja siniseluminofoori segamisel sobivas vahekorras.
Elektronkiiretorude tundlikkus on tavaliselt 0,2–0,6 mm/V. Tundlikkuse suurendamiseks võib pikendada hälvitusplaate, suurendada hälvitussüsteemi
ja ekraani vahekaugust, vähendada plaatide vahekaugust või vähendada anoodpinget (vähendada elektronide liikumise kiirust).
 
Kuna ekraanile langeb töötades pidevalt elektrone, siis peaks ekraan laaduma negatiivselt. Tegelikult aga esineb sekundaaremissioon ja selle tulemusena laadub ekraan hoopis positiivselt. Ekraanilt sekundaaremiteerunud elektronid liiguvad positiivselt pingestatud anoodile. Sekundaaremiteerunud elektronide kiirus on aga ekraani läheduses väike ja tekib ruumilaeng, mis hajutab elektronkiirt. Ruumilaengu kõrvaldamiseks kaetakse toru sisekülg voolujuhtiva grafiitemulsiooni kihiga (akvadaagiga), mis ühendatakse teise anoodiga. Kasutatakse ka alumineeritud ekraani.
Tegelikult on need võimalused aga piiratud, sest plaatide mõõtmete muutmisega kaasneb fokuseerimise halvenemine; plaatide ja ekraani vahekauguse suurendamine ning [[anoodpinge]] vähendamine soodustab aga elektronide hajumist, millega kaasneb kujutise teravuse vähenemine; plaatide vahekauguse vähendamine piirab võimalikku hälvitusnurka.
 
Elektronikahuri poolelt on ekraan kaetud õhukese, elektronidele "läbipaistva" alumiiniumikihiga. See suurendab ekraani valgusviljakust ja kontrastsust ning kaitseb luminofoori elektronikahurist koos elektronidega väljuvate [[ioon]]ide eest. Et elektronid suudaksid alumiiniumikihti edukalt läbida, kasutatakse kõrgemat anoodpinget.
Ainsaks kasutatavaks tundlikkuse suurendamise võimaluseks on murtud kujuga hälvitusplaatide kasutamine, millega hälvituse tundlikkus suureneb 1,5–2 korda. Elektronkiire magnetiliseks hälvitamiseks paigutatakse toru kaelale kaks paari mähiseid nii, et nad oleksid teineteise ja toru telje suhtes risti.
 
Ekraanile langevate elektronide energiast muutub valguseks 2–3%, ülejäänu aga kuumutab ekraani. Kuumenemise tulemusena luminofoor vananeb ja ekraan tuhmub. Samuti võib tugeva vooluga paigalseisev kiir ekraani langemispunktis "läbi põletada".
Ühistelgsed mähised ühendatakse järjestikku ja nende tekitatav magnetväli
hakkab mõjutama kiire hälbenurka. Sealjuures hälvitab horisontaalne magnetväli Hx kiirt verikaalsuunas ja vertikaalne magnetväli Hy horisontaalsuunas. Võrreldes elektrostaatilise hälvitussüsteemiga on magnetilise süsteemi energiatarve suurem ja kasutatavad laotussagedused madalamad. Seevastu on aga kergem saavutada suuri hälvitusnurki.
 
=== Värvikineskoobid ===
==Ekraanid==
Ekraani tähtsaimaks osaks on fluorestseeriva aine kiht. Selleks kasutatakse mitmesuguseid metalliühendeid: tsinksulfiidi, tsinksilikaati (villemiiti), kaltsiumvolframaati jne. Sealjuures lisatakse põhimaterjalile aktivaatoritena 0,001–1% mitmesuguseid metalle (vaske, hõbedat, vismutit jne). Kasutatavad ekraanimaterjalid erinevad üksteisest põhiliselt kolme parameetri poolest. Nendeks on valgusandlikkus, järelhelenduse kestus ja helenduse värvus.
 
Valgusandlikkus on ekraani valgustugevus kiire võimsusel 1 W. See parameeter ei ole konstantne, vaid sõltub elektronide kiirusest (anoodpingest) ja kiire voolutugevusest. Kasutatavate materjalide valgusandlikkus on 0,17–17 cd/W.
 
Järelhelenduse kestus on ajavahemik, mille vältel ekraani heledus pärast elektronkiire kustumist langeb 1%-ni esialgsest. Kasutusotstarbest sõltuvalt võib järelhelenduse kestus olla mõnest mikrosekundist kümnete sekunditeni.
 
Helenduse värvus sõltub otseselt fluorestseerivast ainest ja tema kiirgusspekter on üsna kitsas. Seepärast kasutatakse sageli sobiva helendusega värvuse saamiseks mitmete ainete segusid. Nii näiteks annavad tsinksulfiid ja villemiit rohelise helenduse, kuid esimesel on järelhelendus pikk, teisel aga lühike. Valge helenduse saamiseks kasutatakse tsinksulfiidi ja tsinkkaaliumi segu, mis on aktiveeritud kaadmiumi ja hõbedaga. Arusaadavalt on kasutatavad luminofoorimaterjalid sageli firmasaladus.
 
Kuna ekraanile langeb töötades pidevalt elektrone, siis peaks ekraan laaduma negatiivselt. Tegelikult aga esineb sekundaaremissioon ja selle tulemusena laadub ekraan hoopis positiivselt. Ekraanilt sekundaaremiteerunud elektronid liiguvad positiivselt pingestatud anoodile. Sekundaaremiteerunud elektronide kiirus on aga ekraani läheduses väike ja tekib ruumilaeng, mis hajutab elektronkiirt. Ruumilaengu
kõrvaldamiseks kaetakse toru sisekülg voolujuhtiva grafiitemulsiooni kihiga (akvadaagiga), mis ühendatakse teise anoodiga. Kasutatakse ka alumineeritud ekraani. Alumineeritud ekraani puhul kaetakse ekraani sisekülg õhukese, elektronidele "läbipaistva" alumiiniumi kihiga. Et elektronid suudaksid alumiiniumikihti edukalt läbida, kasutatakse kõrgemat anoodpinget.
 
Ekraanile langevate elektronide energiast muutub valguseks 2–3%, ülejäänu aga kuumutab ekraani. Kuumenemise tulemusena luminofoor vananeb ja ekraan tuhmub. Samuti võib tugeva vooluga paigalseisev kiir ekraani langemispunktis "läbi põletada". Seepärast on ekraani säilitamise eesmärgil soovitav kasutada võimalikult väikest heledust.
 
==Ostsilloskoobid==
Ostsilloskoobitorud on elektronkiiretorud, mida kasutatakse ostsilloskoopides kiiresti muutvate pingete ja voolud jälgimiseks. Suurema sagedusega tööpiirkonna tagamiseks kasutatakse neis elektrostaatilist hälvitussüsteemi.
 
Muutuvate pingete uurimisel rakendatakse uuritav pinge y-teljelistele plaatidele, x-teljelistele plaatidele aga antakse ajaliselt lineaarse laotuse saamiseks hammaspinge. Hammaspinge tõusu kestel kaldub elektronkiir perioodiliselt vasakult paremale ja langu kestel kiiresti tagasi. Kui hammaspinge periood on võrdne või kordne uuritava pinge perioodiga, saame olukorra, kus üksikute perioodide jäljed satuvad pealekuti ja ekraanil tekib jälgimiseks sobiv seisev kujutis.
 
Kasutatavamaks ekraanimaterjaliks on villemiit, mis võimaldab jälgida protsesse alates sagedusest 10–20 Hz. Väiksema sagedusega protsesside jälgimiseks kasutatakse pikema järelhelendusega ekraane. Eriti pika järelhelendusega ekraanidega ostsilloskoobitorusid saab kasutada kiirete, kuid väikese kordussagedusega või korrapäratute järgnevustega nähtuste jälgimiseks. Mäluga ostsilloskoopide kasutuseletulek on aga nende vajadust järsult vähendanud.
 
Ostsilloskoobitoru ülemine sageduspiir on küllalt kõrge. Ta on määratud elektronide lennuajaga hälvitussüsteemis ja samuti parasiitmahtuvuste ja juhtmete induktiivsuste toimega. Suurtel sagedustel jõuab hälvituspinge juba muutuda selle aja vältel, mille kestel elektronid on hälvitussüsteemis. Praktiliselt avaldub kirjeldatud nähtus elektronkiiretoru tundlikkuse vähenemises kõrgematel sagedustel. Ülemine sageduspiir on tavalistel ostsilloskoobitorudel kuni 150 MHz ja eriti kõrgetele sagedustele konstrueeritud torudel kuni 1 GHz.
 
Valmistatakse ka mitme kiirega ostsilloskoobitorusid, mida saab kasutada mitme üheaegse protsessi jälgimiseks. Mitme kiirega ostsilloskoobitorus on ühisesse kesta paigutatud mitu elektronkahurit ja hälvitussüsteemi, kiired aga juhitakse ühisele ekraanile, kus näemegi üheaegselt jälgitavaid protsesse.
 
==Mustvalged kineskoobid==
Kineskoopideks (inglise ''picture tube'') nimetatakse televiisorites kasutatavaid elektronkiiretorusid. Kujutise saamiseks liigub kineskoobis elektronkiir rida-realt läbi kõik ekraani punktid. Vastavalt ülekantavale kujutisele tüüritakse samaaegselt ka kiire heledust tüürelektroodile (modulaatorile) antava videosignaali pingega. Ekraanil tekivad erineva heledusega täpid, mille kogum loobki kujutise.
 
Kiirelt liikuvate kujutiste ülekandmiseks on elektronkiire liikumise kiirus väga suur. Samal põhjusel peab ekraani järelhelenduse kestus olema piisavalt lühike (<0,l s). Sealjuures on nõudeks, et helenduv täpp oleks väike ja säilitaks oma teravuse igas ekraani punktis. Kineskoobi ekraan peab olema küllalt suur ja ristkülikulise kujuga. Et kineskoop ei kujuneks suure ekraani korral liiga pikaks, kasutatakse suuri hälvitusnurki ja seepärast kasutataksegi kineskoopides seni eranditult magnetilist hälvitussüsteemi.
 
Lineaarse laotuse saamiseks peab hälvitussüsteemi poole läbima hammasvool. Laotuseks vajaliku homogeense magnetvälja saamiseks on mähised küllaltki keeruka kujuga ja nende toimet korrigeeritakse veel püsimagnetitega, mis paiknevad kineskoobi kaelal. Fokuseerimissüsteemis kasutatakse kineskoopidel kiirendusanoodiga süsteemi, kusjuures esimest anoodi nimetatakse teravduselektroodiks. Ekraanidena kasutatakse alumineeritud ekraane, mille iga on pikem. Suurema mehaanilise tugevuse tagamiseks on mõnikord kineskoopide kestad osaliselt metallist.
 
==Värvilised kineskoobid==
Värvikineskoobi ekraanil moodustub värviline kujutis kolme põhivärvi kooskiirgusest: punane (tähis R – ''red''), roheline (tähis G – ''green'') ja sinine (tähis B –''blue''). Igale värvusele on oma elektronkiir ja luminofoorielemendid. Eri kahurite katoodide kütteniidid on ühendatud paralleelselt, kuid iga värvi katood on eraldi välja toodud, ühine on heleduse modulaator ning ühised on ka fokuseerimiselektroodid.
 
101. rida ⟶ 53. rida:
Hälvitusmähised paigaldab ja reguleerib kineskoopide valmistaja, ainult korrigeerimismagneteid kineskoobi kaelal reguleerib teleri valmistaja.
 
== Kuvaritorud ==
Kuvaritorud (Display Tube) on kineskoopide eriliigiks, mille eripära tuleneb nende kasutamise iseärasustest. Põhiline erinevus on selles, et arvuti kasutaja vaatab kuvari ekraani palju ligemalt kui televaataja. Sellest tulenevad kiirguse ja ka kujutise teravuse erinõuded. Ka on kuvaritorud reeglina väiksema ekraanidiagonaaliga, kusjuures kasutatakse nii aukmaski kui ka ribamaskiga torusid.
 
Kujutise teravuse ehk lahutusvõime[[eraldusvõime]] määrab ekraanile kantud pildipunktide ehk [[piksel |pikslite]] üldarv., Selleksmis onsaadakse reas olevate pildipunktide arv korrutatudkorrutamisel ridade arvuga. Iga pildipunkt moodustub kolmest ekraani sisepinnal olevast erivärvilisest luminofooritäpist või kolmest kõrvutisest luminofooririba lõigust. LahutusvõimeEraldusvõime ja kujutise teravus on seda suurem, mida väiksemad on pildipunktid. Nende suurus on tavaliselt 0,25–0,41 mm. Pikslite koguarv sõltub sellest, mis otstarbeks on antud kuvar tehtud.
 
Kuvari tähtsaks parameetriks on ka vertikaalhälvitus- ehk kaadrisagedus. See näitab, mitu korda sekundis joonistab elektronkiir ekraanile kujutise. Kaadrisagedus on tavaliselt 60 Hz või rohkem. Mida suurem on sagedus, seda vähem väreleb kujutis. Ekraanilt valguse peegeldumise vähendamiseks on kallimate kuvaritorude pind kaetud spetsiaalse helkimisvastase aine kihiga.
 
Kuvari ekraan kiirgab infrapunast, raadio- ja röntgenikiirgust ja tekitab ka elektrostaatilist välja. Kiirgustasemed on kuvaritel normeeritud ja kiirguse vähendamiseks kasutatakse ekraanifiltreid, mis võivad olla ka kuvarisse sisse ehitatud. UuemadTäiustatud nn LR-kuvarid (LR – ''Low Radiation'') täiendavaid filtreid ei vaja.
 
[[Pilt:Oscilloscopic tube.jpg|pisi|Ostsilloskoobitoru]]
==Elektronkiiretorude tähistamine==
 
Nii nagu teistel seadistel, võib ka elektronkiiretorudel kohata valmistajafirmast ja -maast sõltuvalt erinevaid tähistussüsteeme.
==Ostsilloskoobitorud==
Ostsilloskoobitorud on elektronkiiretorud, mida kasutatakse [[ostsilloskoop]]ides kiiresti muutvate pingete ja voolud jälgimiseks. Suurema sagedusega tööpiirkonna tagamiseks kasutatakse neis elektrostaatilist hälvitussüsteemi.
 
Muutuvate pingete uurimisel rakendatakse uuritav pinge y-teljelistele plaatidele, x-teljelistele plaatidele aga antakse ajaliselt lineaarse laotuse saamiseks hammaspinge. Hammaspinge tõusu kestel kaldub elektronkiir perioodiliselt vasakult paremale ja langu kestel kiiresti tagasi. Kui hammaspinge periood on võrdne või kordne uuritava pinge perioodiga, saame olukorra, kus üksikute perioodide jäljed satuvad pealekuti ja ekraanil tekib jälgimiseks sobiv seisev kujutis.
 
Kasutatavamaks ekraanimaterjaliks on villemiit, mis võimaldab jälgida protsesse alates sagedusest 10–20 Hz. Väiksema sagedusega protsesside jälgimiseks kasutatakse pikema järelhelendusega ekraane. Eriti pika järelhelendusega ostsilloskoobitorusid saab kasutada kiirete, kuid väikese kordussagedusega või korrapäratute järgnevustega nähtuste jälgimiseks. Mäluga ostsilloskoopide kasutusele tulek on aga nende vajadust järsult vähendanud.
===Philipsi süsteem===
Firma Philips tähis on neljaelemendiline, kus esimeseks elemendiks olev täht määrab toru liigi, teiseks elemendiks olev number ekraani diameetri sentimeetrites, kolmas element sidekriipsu järel on registreerimisnumber ja neljandaks elemendiks olev täht määrab luminofoori liigi, näiteks A51-590X.
 
Ostsilloskoobitoru ülemine sageduspiir on küllalt kõrge. Ta on määratud elektronide lennuajaga hälvitussüsteemis ja samuti parasiitmahtuvuste ja juhtmete induktiivsuse toimega. Kõrgetel sagedustel jõuab hälvituspinge juba muutuda selle aja vältel, mille kestel elektronid on hälvitussüsteemis. Praktiliselt avaldub kirjeldatud nähtus elektronkiiretoru tundlikkuse vähenemises kõrgematel sagedustel. Ülemine sageduspiir on tavalistel ostsilloskoobitorudel kuni 150 MHz ja eriti kõrgetele sagedustele konstrueeritud torudel kuni 1 GHz.
===Ameerika süsteem===
Küllalt levinud on ameerika süsteem. Sel puhul koosneb tähis kuuest elemendist:
esimene on täht, mis määrab toru liigi (A – kineskoop, M – monitor/kuvar); teine on arv, mis väljendab ekraani diagonaali; kolmas on kolmetäheline tähis, mis määrab toru iseärasused ja ka tarnija; neljas element on kahekohaline arv, mis määrab modifikatsiooni; viies element on täht, mis määrab luminofoori (X – värviline, M – monokromaatne); viies element on kahekohaline number, mis määrab toru komplekteerituse. Näiteks: A51KAS40X02.
 
Valmistatakse ka mitme kiirega ostsilloskoobitorusid, mida saab kasutada mitme üheaegse protsessi jälgimiseks. Mitme kiirega ostsilloskoobitorus on ühisesse kesta paigutatud mitu elektronikahurit ja hälvitussüsteemi, kiired aga juhitakse ühisele ekraanile, kus näemegi üheaegselt jälgitavaid protsesse.
===Vene süsteem===
Vene tüübitähis koosneb neljast elemendist: esimene on arv, mis väljendab ekraani diagonaali või diameetrit sentimeetrites; teine element on kahetäheline ja ta määrab toru kasutusala ( K – kineskoobid, O – ostsilloskoobitorud); kolmas element on tüübi number; neljas element on täht, mis iseloomustab ekraani omadusi (I valge, U – kolmevärviline mosaiik). Näiteks: 43 K2.
 
{{Commonskat|Cathode ray tube|Elektronkiiretoru}}