Annihilatsioon: erinevus redaktsioonide vahel

Eemaldatud sisu Lisatud sisu
PResümee puudub
PResümee puudub
24. rida:
Tulenevalt [[energia jäävuse seadus]]est peab tekkima vähemalt üks osake, mis võtab enda kanda nii annihileerunud osakestel olnud kui ka annihileerumise tulemusena tekkinud energia. Samuti ei tohi rikkuda [[implusi jäävuse seadus]]t ning seega peab annihilatsiooni tulemusena eralduvaid osakesi olema vähemalt kaks või rohkem.
 
Kuna kõik antiosakese [[kvantarv]]ud on sama suured kui osakesel, kuid vastupidise märgiga, siis annihileerumise tulemusena tekkinud osakesel peavad kõik kvantarvud olema võrdsed nulliga. Kõige levinum selline osake on [[footon]], mis on ka enamiku annihilatsiooniprotsesside lõpptulemus. Samas , kui osakese ja antiosakese energia on piisavalt suur, siis võivad annihileerumise tulemusena tekkida ka muud osakesed, mille kõik kvantarvud on nullid. Tavaliselt on tekkinud osakesed ebastabiilsed ning lagunevad kohe peale tekkimist lihtsamateks (madalama energiaga) osakesteks.
 
==Aine ja antiaine annihileerumine==
41. rida:
===Madala energiaga annihiliatsioon===
Lõppseisundi jaoks on väga piiratud võimalused. Kõige tõenäolisem on kahe või enam gammakvandi loomine. Energia ja impulsi jäävusseadused keelavad üldjuhul ainult ühe footoni tekkimise. Erijuhul, kui elektronid on väga tihedasti aatomi ümber pakitud, võib tekkida üks footon.<ref name="Sodickson"/> Enamasti siiski kiiratakse kaks footonit, mille energia on võrdne elektroni ja positroni seisuenergiatega (511 keV)<ref name="Atwood"/>. Mugav on lähtuda inertsiaalsest taustsüsteemist, kus enne annihilatsiooni on süsteemi summaarne sirgjooneline impulss null. Sellisel juhul kiirguvad gammakiired peale kokkupõrget vastassuundadesse. Samuti on küllaltki tavaline kolme gammakvandi teke, kuna teatud impulssmomentidega olekus on vaja säilitada laengu paarsust.<ref name="griffiths"/> Ka suurema arvu footonite teke on võimalik, kuid tõenäosus nende tekkeks väheneb iga lisafootoniga, kuna neil keerulistel protsessidel on madalam tõenäosusamplituud.
Kuna [[neutriino]]del on samuti väiksem mass kui elektronidel, on ka põhimõtteliselt võimalik, kuigi eriti ebatõenäoline ühe või enam neutriino-antineutriino paaride teke. Sama on tõsi ka teiste osakeste puhul, mis on kerged. Neutriinodest kergemaid [[fermion]]e pole leitud..
 
===Kõrge energiaga annihiliatsioon===